7. The Dissociation Constants of Organic Acids. Part XI.* The Thermodynamic Primary Dissociation Constants of Some Normal Dibasic Acids.

By George H. Jeffery and Arthur I. Vogel.
In spite of numerous determinations of the dissociation constants of dibasic acids by conductivity methods during the last 45 years, neither the primary nor the secondary constant of any such acid is known with accuracy, as judged by modern physicochemical standards.

* The paper entitled " The Determination of the Thermodynamic Dissociation Constant of Benzoic Acid, at $\mathbf{2 5}^{\circ}$, from Conductivity Measurements " (Phil. Mag., 1934, 18, 901) is regarded as Part X; this contains a review of our method for the determination of the true dissociation constants of monobasic acids.

The present communication describes the evaluation of the true primary dissociation constants of certain dibasic acids. The secondary dissociation constants cannot at present be satisfactorily calculated from conductivity data alone (compare Wegscheider, Monatsh., 1902, 23, 599 ; Luther, Z. Elektrochem., 1907, 13, 296 ; Chandler, J. Amer. Chem. Soc., 1908, 30, 709; Drucker, Z. physikal. Chem., 1920, 96, 405 ; Paul, ibid., 1923, 110, 434, for methods involving certain arbitrary assumptions) ; subsidiary transport-number data (compare Sherrill and Noyes, J. Amer. Chem. Soc., 1926, 48, 1861) or other data obtainable by potentiometric methods are necessary, and these, together with the method of computation, will be discussed in a later paper.

The chief difficulties in the evaluation of the primary dissociation constants are: (1) The determination of the limiting mobility of the acid ion, $l_{0 \mathrm{HX}^{\prime}}$; direct determination from conductivity data of the acid salt, NaHX or KHX , is impossible owing to the secondary dissociation $\mathrm{HX}^{\prime} \rightleftharpoons \mathrm{H}^{\bullet}+\mathrm{X}^{\prime \prime} ;(2)$ the correction of the conductivity data relating to the disodium salt for hydrolysis. The latter difficulty has been completely overcome, and a method is described (see p. 24) for the application of a combined hydrolysis and solvent correction; μ_{0} for the disodium salts can then be calculated by the " n " formula. A very close approximation to the limiting mobility of the acid ion can be obtained as follows: $l_{0} \mathrm{HX}^{\prime}$, which for normal dibasic acids is $l_{0} \mathrm{CO}_{3} \mathrm{H}_{\cdot} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO}_{2}^{\prime}$, is assumed equal to that of the corresponding amic acid ion, $\mathrm{NH}_{2} \cdot \mathrm{CO} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO}_{2}^{\prime}$ (Part IX, J., 1934, 1101). The results for the limiting equivalent conductivities of the sodium amate and the derived dibasic acid salt, together with the corresponding limiting ionic mobilities, are collected in Table I ($l_{0} \mathrm{Na}^{\cdot}=49 \cdot 8$; Part IV, J., 1931, 1715).

Table I.

Equivalent conductivity, Λ_{0}, for		Limiting ionic mobility, l_{0}, for		
x.	$\mathrm{NH}_{2} \cdot \mathrm{CO} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO}_{2} \mathrm{Na} . \quad \mathrm{CO}_{2} \mathrm{Na} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO}_{2} \mathrm{Na}$.		${ }_{\text {a }}{ }^{\text {a }}$. ${ }^{\text {a }}$	\bar{B}
1	$85.31 \quad 114.46$	$35 \cdot 5$	$64 \cdot 7$	$0 \cdot 549$
2	$81 \cdot 29$ 110.75	31.5	$60 \cdot 9$	$0 \cdot 517$
3	$79 \cdot 83 \quad 106 \cdot 67$	$30 \cdot 0$	$56 \cdot 9$	$0 \cdot 527$
4	$\begin{array}{ll}78.38 & 102.78\end{array}$	$28 \cdot 6$	$52 \cdot 9$	$0 \cdot 540$
			Mean	0.533

It will be seen that there is a simple connexion between the mobility of the amic and hence of the acid ion and the corresponding neutral-salt ion; the relationship $l_{0 \mathrm{HX}^{\prime}}=0.53 l_{0} \mathrm{X}^{\prime \prime}$ may therefore be employed for the calculation of the limiting mobility of the acid ion from that of the derived bivalent ion * (compare Chandler, J. Amer. Chem. Soc., 1908, 30, 709; also Part IX, loc. cit.). Slight variations of this factor do not appreciably affect the value of the true dissociation constant, $K_{1, \text { therm. }}$ (compare p. 28 for malonic acid).

The true dissociation constant is computed in the usual manner (compare MacInnes, J. Amer. Chem. Soc., 1926, 48, 2068; MacInnes and Shedlovsky, ibid., 1932, 54, 1432 ; Parts VI and VII, J., 1932, 2829; 1933, 1637), Λ_{e} being given by the expression $\Lambda_{e} \mathrm{H}_{2} \mathrm{~A}=$ $\Lambda_{c^{\prime \prime}} \mathrm{HCl}-\Lambda_{c^{\prime \prime}} \mathrm{NaCl}+\Lambda_{c^{\prime \prime}} \mathrm{NaHA}$, where $c^{\prime \prime}$ is the ionic concentration, and $\Lambda_{c^{\prime \prime}} \mathrm{NaHA}$ is computed with the aid of the Debye-Hückel-Onsager equation (for details, see p. 26).

The final results for the thermodynamic dissociation constants and for Λ_{0} are tabulated below.

	Acid.	Λ_{0}.	$K_{1 . \text { therm. }} \times 10^{5}$.		Λ_{0}.	$K_{1, \text { therm. }} \times 10^{5}$.
Malonic		383.5	139.7	Adipic	$376 \cdot 6$	$3 \cdot 715$
Succinic		379.5	$6 \cdot 626$	Pimelic	$374 \cdot 6$	$3 \cdot 097$
Glutaric		378.0	$4 \cdot 535$	Suberic	373•1	$2 \cdot 994$

[^0]These values are being employed as standards for the investigation of the various potentiometric methods available for the determination of dissociation constants, and the results will be communicated later. The early work of Ostwald, Walden, Voermann, Smith, Bethmann, and others during 1889-1904 on the classical dissociation "constants" of these acids must now be regarded as of very little quantitative value and is not discussed further.

It is necessary to reply to the serious criticisms made by Ives, Riley, and Linstead (J., 1932, 1093) on the work on malonic acid and other dibasic acids described by one of us in Parts I and II (loc. cit.). First, referring to the hydrolysis of the disodium salts, they state that " the existence of this hydrolysis introduces a very difficult problem, for it is, at present, impossible to measure this, with anything like the same degree of accuracy as that which can be attained in the measurement of the conductivity of the solutions. Neither can it be calculated from the conductivity data without an accurate knowledge of the mobilities of acid and normal ions," but this criticism has little significance now in view of the methods described in this paper. Secondly, they employ the now generally discarded methods, such as those depending on the Ostwald dilution formula, Kraus's and also Derick's methods, for the evaluation of Λ_{0} by the extrapolation of the acid conductivity results, since they hold the view that the high values (approximately 20 units) yielded by extrapolation of the disodium salt data are due to hydrolysis. Although we admit that hydrolysis is undoubtedly present, we do not consider that the discrepancy is to be attributed entirely to this cause. The largest error has been introduced in their calculation of the mobility $l_{0} \mathrm{Hx}^{\prime}$. The correct relation is $l_{0 \mathrm{HX}}=0.5 l_{0} \mathrm{X}^{\prime \prime}$, which, for cyclohexane-1:1diacetic acid (loc. cit., p. 1099), is $0.5 \times 42 \cdot 5=21 \cdot 25$ or $\Lambda_{0}=349.05+21 \cdot 25=370 \cdot 3$, if one employs Ives, Linstead, and Riley's figures, including Λ_{0} for the disodium salt, the method of calculation of which is not described.

In view of the foregoing remarks and the fact that those authors have confined themselves to the primary Ostwald dissociation " constants," it would appear that, whilst their main theoretical conclusions may be correct, a determination of the true primary and secondary dissociation constants of these cyclic 1:1-diacetic acids is desirable.

Experimental.

Preparation of Materials.-Acids. The essential details have already been described (Vogel, J. 1934, 336). All operations were carried out in Pyrex vessels, and all solvents for recrystallisation, indicated in parentheses after the m. p., were of B.D.H. "A.R." purity.

Malonic acid. (I) Kahlbaum's acid. (II) Boots's acid. Both m. p. 136° (decomp.) [benzene-ether-light petroleum (b. p. $60-80^{\circ}$)].

Succinic acid. (I) Kahlbaum's acid. (II) Ex nitrile of m. p. 54 ${ }^{\circ}$. Both m. p. 185-185.5 ${ }^{\circ}$ (acetone).

Glutaric acid. Two specimens, from two independent preparations of the nitrile (b. p. $149-150^{\circ} / 14 \mathrm{~mm}$.), both had m. p. 97.5-98 (chloroform).

Adipic acid. . (I) Ethyl succinate, b. p. $113^{\circ} / 22 \mathrm{~mm}$., was reduced with sodium and ethyl alcohol (compare Bennett and Mosses, J., 1931, 1697) to tetramethylene glycol, b. p. 127-129 ${ }^{\circ}$ 12 mm ., which was successively converted into the dibromide (b. p. $82-84^{\circ} / 12 \mathrm{~mm}$.) by constant b. p. hydrobromic acid and sulphuric acid (compare Kamm and Marvel, J. Amer. Chem. Soc., $1920,42,307$), the dinitrile (b. p. $180-182^{\circ} / 19 \mathrm{~mm}$.) by aqueous-alcoholic potassium cyanide, and into the acid by 50% sulphuric acid; m. p. $151 \cdot 5-152^{\circ}$ (acetone). (II) A commercial specimen, m. p. 151- 152° (acetone).

Pimelic acid. From two independent preparations of the dinitrile; b. p. $169-171^{\circ} / 15 \mathrm{~mm}$., m. p. 106° (benzene-ether).

Suberic acid. From two independent preparations of the dinitrile; b. p. $178-180^{\circ} / 15 \mathrm{~mm}$., m. p. 142° (acetone).

Disodium salts. With the exception of Boots's sodium malonate (specimen II), these were all prepared by adding the calculated quantity of sodium hydroxide solution, prepared from the A.R. solid and standardised against A.R. potassium hydrogen phthalate, to known weights of the pure acids, and were recrystallised from aqueous methyl (for the malonate and glutarate) or ethyl alcohol (for the other acids). Details of the preparations are tabulated below.

Disodium Salts.

$\mathrm{Na}, \%$.				$\mathrm{Na}, \%$.	
	Found.	Calc.		Found.	Calc.
Malonate (Boots's)	$31 \cdot 02$	31.08	Adipate, from acid (I)	$24 \cdot 16$	$24 \cdot 21$
, from acid (I)	$31 \cdot 06$,' ${ }^{\text {, (II) }}$	$24 \cdot 20$	
Succinate, from acid (I)	28.45	28.38	Pimelate, from acid (I)	$22 \cdot 47$	22.53
, (II)	28.37		(II)	$22 \cdot 54$	
Glutarate, from acid (I) .	$26 \cdot 23$	$26 \cdot 15$	Suberate, from acid (I)	$21 \cdot 19$	21.10
, (II)	$26 \cdot 14$		(II)	$21 \cdot 15$	

Combined Hydrolysis and Solvent Correction for Disodium Salts.-In a solution of the disodium salt in " equilibrium" water, the most important equilibria are :

$$
\begin{array}{cl}
\mathrm{Na}_{2} \mathrm{X} \rightleftharpoons 2 \mathrm{Na}^{\bullet}+\mathrm{X}^{\prime \prime} . \quad . \quad . \quad . \quad(1) ; \quad \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{\bullet}+\mathrm{OH}^{\prime} . \quad . \quad . \quad . \quad \text { (2); } \\
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{\bullet}+\mathrm{HCO}_{3}^{\prime} \quad . \quad . \quad . \quad(3) ; \quad \mathrm{X}^{\prime \prime}+\mathrm{H} \cdot \mathrm{OH} \rightleftharpoons \mathrm{HX}^{\prime}+\mathrm{OH}^{\prime} . \tag{4}
\end{array}
$$

The secondary dissociation of the carbonic acid is neglected, as is also the secondary hydrolysis $\mathrm{HX}^{\prime}+\mathrm{H} \cdot \mathrm{OH} \rightleftharpoons \mathrm{H}_{2} \mathrm{X}+\mathrm{OH}^{\prime}$. The ions present are $\mathrm{Na}{ }^{\circ}, \mathrm{H}^{\circ}, \mathrm{OH}^{\prime}, \mathrm{HCO}_{3}{ }^{\prime}, \mathrm{HX}^{\prime}$, and $\mathrm{X}^{\prime \prime}$, and since the solution is electrically neutral

$$
\begin{align*}
{\left[\mathrm{Na}{ }^{\bullet}\right]+\left[\mathrm{H}^{*}\right]=} & 2\left[\mathrm{X}^{\prime \prime}\right]+\left[\mathrm{HX}^{\prime}\right]+\left[\mathrm{HCO}_{3}^{\prime}\right]+\left[\mathrm{OH}^{\prime}\right] . \tag{5}\\
{\left[\mathrm{H}^{*}\right]\left[\mathrm{OH}^{\prime}\right]=} & K_{w}, \text { and }\left[\mathrm{OH}^{\prime}\right]=K_{w} /\left[\mathrm{H}^{*}\right] . \tag{6}\\
& {\left[\mathrm{X}^{\prime}\right]\left[\mathrm{H}^{\bullet}\right] /\left[\mathrm{HX}^{\prime}\right]=K_{2} \cdot . } \tag{7}
\end{align*} .
$$

Now
Also
and $C=$ conen. of salt (g.-mols. $/ 1$.) $=\left[\mathrm{X}^{\prime}\right]+\left[\mathrm{HX}^{\prime}\right]$
or

$$
\begin{equation*}
\left[\mathrm{HX}^{\prime}\right]=C-\left[\mathrm{X}^{\prime}\right] . \tag{8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\left[\mathrm{X}^{\prime \prime}\right]\left[\mathrm{H}^{\bullet}\right]}{\left(C-\left[\mathrm{X}^{\prime \prime}\right]\right)}=K_{2} \text { or }\left[\mathrm{X}^{\prime \prime}\right]=\frac{K_{2} C}{\left[\mathrm{H}^{*}\right]+K_{2}} . \tag{9}
\end{equation*}
$$

Further, if m is the total concentration of carbonic acid (in g.-mols./l.),

$$
\begin{equation*}
K_{c}=\frac{\left[\mathrm{H}^{\bullet}\right]\left[\mathrm{HCO}_{3}{ }^{\prime}\right]}{m-\left[\mathrm{HCO}_{3}{ }^{\prime}\right]} \text { or }\left[\mathrm{HCO}_{3}{ }^{\prime}\right]=\frac{K_{c} m}{\left[\mathrm{H}^{*}\right]+K_{c}} . \tag{10}
\end{equation*}
$$

Substituting in (5), and remembering that $\left[\mathrm{Na}^{\circ}\right]=2 C$, one obtains

$$
\begin{equation*}
C+\left[\mathrm{H}^{*}\right]=\frac{K_{2} C}{\left[\mathrm{H}^{*}\right]+K_{2}}+\frac{K_{w}}{\left[\mathrm{H}^{*}\right]}+\frac{K_{c} m}{\left[\mathrm{H}^{*}\right]+K_{c}} . \tag{11}
\end{equation*}
$$

This expression is identical with equation (6) of Part VII (J., 1933, 1639) except that K_{2} is substituted for K_{a}.

The solution of this equation of the fourth degree for $\left[\mathrm{H}^{*}\right]$ is that given in our previous paper (loc. cit.) ; expression (7) is used for those cases where $K_{2} m>10^{-10}$, and expression (9) where $K_{2} m<10^{-10}$. Our thanks are due to Mr. H. V. Lowry, M.A., for this deduction.

Having calculated $\left[\mathrm{H}^{*}\right]$, we can readily compute the other ionic concentrations, and the correction to be added to the observed specific conductivity is given by

$$
\begin{align*}
& \Delta_{\kappa}=10^{-3}\left\{\Lambda_{\mathbf{x}^{\prime}} 2\left(C-\left[\mathrm{X}^{\prime \prime}\right]\right)-\Lambda_{\mathbf{H}} \cdot\left[\mathrm{H}^{\bullet}\right]-\Lambda_{\mathbf{O H}^{\prime}}\left[\mathrm{OH}^{\prime}\right]\right. \\
&\left.-\Lambda_{\mathbf{H C O}_{3}}\left[\mathrm{HCO}_{3}^{\prime}\right]-\Lambda_{\mathbf{H X}^{\prime}}\left(C-\left[\mathrm{X}^{\prime \prime}\right]\right)\right\} \tag{12}
\end{align*}
$$

Sufficiently accurate values of K_{2} for use in the application of the correction may be obtained directly, without any further calculation, from the potentiometric titration curve, determined with the hydrogen, quinhydrone, or glass electrode. For the actual calculations on the normal dibasic acids, K_{2} was taken as 3×10^{-6} (compare Gane and Ingold, J., 1931, 2158), $K_{c}=$ $4.54 \times 10^{-7}, \Lambda_{\mathrm{H}}=348.0, \Lambda_{\mathrm{OH}^{\prime}}=210.8, \Lambda_{\mathrm{HCO}_{3}{ }^{\prime}}=46.9$, and $\Lambda_{\mathrm{X}^{\prime \prime}}$ and $\Lambda_{\mathrm{HX}}{ }^{\prime}$ were the preliminary values obtained by applying a normal solvent correction.

General Technique and Apparatus.-This was that described in earlier paper of this series. Four cells of the Hartley and Barrett type, two of silica, R (0.02586_{3}) and $Q\left(0.02674_{8}\right)$, two of Pyrex, $\mathrm{S}\left(0.03422_{8}\right)$ and $\mathrm{V}\left(0.02781_{5}\right)$, and three Kohlrausch cells of Pyrex, J $\left(0.2474_{1}\right)$, $\mathrm{V}\left(0 \cdot 2499_{0}\right)$, and $\mathrm{N}\left(0 \cdot 3330_{4}\right)$, were employed; the figures in parentheses are the corresponding cell constants. All measurements were carried out at $25^{\circ} \pm 0.01^{\circ}$.

The experimental results for the disodium salts with equilibrium water are given in Table II; κ is the specific conductivity of the water used, μ, obs. is the molecular conductivity after application of a normal solvent correction, μ, corr. that corrected by means of equation (12), $\mu_{0}{ }^{n}$ is the value of the limiting molecular conductivity calculated by the " n " formula, the constants of which, together with that of the limiting mobility of the anion, $l_{0 \mathrm{x}}$ ", are given at the head of the table. Molecular weights are based on atomic weights given in J., 1933, 361.

Table II.

Disodium Salts of Normal Dibasic Acids at 25°.
Sodium malonate.
$\mu_{0}{ }^{n}=\mu_{c}+403 \cdot 5 C^{0.491} ;$
$\mu_{0}{ }^{n}=228.92 ; \quad l_{0} \mathrm{x}^{n}=64.7$.
C
$\times 10^{4} . \quad$ obs. \quad corr. $\quad \mu_{0}{ }^{n}$.

Run 1. Cell V. $\kappa=0.615$. Specimen I.

$1 \cdot 737$	$219 \cdot 17$	$224 \cdot 45$	-
$5 \cdot 148$	$217 \cdot 11$	$218 \cdot 76$	$228 \cdot 74$
$10 \cdot 73$	$213 \cdot 87$	$214 \cdot 63$	$228 \cdot 70$
$22 \cdot 20$	$208 \cdot 41$	$208 \cdot 83$	$228 \cdot 85$
$37 \cdot 73$	$202 \cdot 96$	$203 \cdot 14$	$229 \cdot 16$
$57 \cdot 56$	$197 \cdot 37$	$197 \cdot 60$	$(229 \cdot 62)$
$73 \cdot 35$	$194 \cdot 21$	$194 \cdot 26$	$(213 \cdot 17)$
$107 \cdot 0$	$189 \cdot 21$	$189 \cdot 21$	$(232 \cdot 63)$

Sodium succinate.

Run 1. Cell V. $\kappa=0.633$.
Specimen I.

$1 \cdot 106$	$215 \cdot 99$	$224 \cdot 43$	-
$5 \cdot 674$	$214 \cdot 09$	$215 \cdot 36$	$221 \cdot 40$
$13 \cdot 64$	$210 \cdot 98$	$211 \cdot 40$	$221 \cdot 24$
$33 \cdot 92$	$203 \cdot 65$	$204 \cdot 00$	$221 \cdot 54$
$50 \cdot 27$	$199 \cdot 04$	$199 \cdot 21$	$221 \cdot 73$
$63 \cdot 06$	$196 \cdot 30$	$196 \cdot 37$	$(222 \cdot 38)$
$84 \cdot 82$	$191 \cdot 64$	$191 \cdot 65$	$(222 \cdot 75)$
$95 \cdot 32$	$189 \cdot 93$	$189 \cdot 95$	-

Sodium glutarate.

$\mu_{0}{ }^{\mu_{0}}=213.34 ; l_{0} x^{\prime \prime}=56.9$.
$\begin{array}{cc}C & \mu, \\ \times 10^{4} . & \mu, \\ \text { obs. } & \\ \text { corr. } & \mu_{0}{ }^{n} .\end{array}$

Run 2. Cell S. $\kappa=0.638$.
Specimen II.

$3 \cdot 471$	$217 \cdot 97$	$220 \cdot 22$	-
$8 \cdot 308$	$215 \cdot 50$	$216 \cdot 51$	$228 \cdot 86$
$16 \cdot 02$	$211 \cdot 32$	$211 \cdot 76$	$228 \cdot 84$
$26 \cdot 88$	$206 \cdot 78$	$207 \cdot 09$	$229 \cdot 11$
$31 \cdot 70$	$204 \cdot 88$	$205 \cdot 19$	$229 \cdot 06$
$48 \cdot 73$	$199 \cdot 66$	$200 \cdot 21$	$(229 \cdot 72)$
$81 \cdot 01$	$192 \cdot 82$	$192 \cdot 92$	-
$92 \cdot 48$	$191 \cdot 14$	$191 \cdot 20$	-

Sodium adipate.
$\mu_{0}{ }^{n}=\mu_{c}+207 \cdot 7 C^{0.365} ;$
$\mu_{0}{ }^{n}=205 \cdot 36 ; \quad l_{0} \mathrm{X}^{\prime \prime}=52 \cdot 9$.
Run 1. Cell V. $\kappa=0.623$.
Specimen I.

$1 \cdot 087$	$194 \cdot 35$	$199 \cdot 23$	-
$5 \cdot 140$	$191 \cdot 03$	$192 \cdot 27$	$205 \cdot 34$
$1 \cdot 23$	$187 \cdot 00$	$187 \cdot 98$	$205 \cdot 37$
$26 \cdot 84$	$180 \cdot 93$	$181 \cdot 25$	$205 \cdot 15$
$43 \cdot 95$	$176 \cdot 67$	$176 \cdot 79$	$205 \cdot 41$
$66 \cdot 88$	$172 \cdot 36$	$172 \cdot 49$	$(205 \cdot 85)$
$86 \cdot 37$	$169 \cdot 43$	$169 \cdot 46$	$(206 \cdot 09)$
$108 \cdot 3$	$166 \cdot 73$	$166 \cdot 74$	-

Run 2. Cell S. $\kappa=0.652$. Specimen II.

Run 1. Cell V. $\kappa=0.630$.
Specimen I.

$0 \cdot 782$	$203 \cdot 07$	$209 \cdot 01$	-
$5 \cdot 491$	$198 \cdot 79$	$199 \cdot 94$	$213 \cdot 35$
$9 \cdot 777$	$195 \cdot 94$	$196 \cdot 98$	$213 \cdot 17$
$18 \cdot 55$	$191 \cdot 73$	$192 \cdot 20$	$213 \cdot 03$
$41 \cdot 84$	$184 \cdot 43$	$184 \cdot 55$	$213 \cdot 23$
$60 \cdot 87$	$180 \cdot 33$	$180 \cdot 49$	$213 \cdot 72$
$79 \cdot 34$	$177 \cdot 22$	$177 \cdot 27$	$(214 \cdot 15)$
$96 \cdot 78$	$174 \cdot 73$	$174 \cdot 75$	$(214 \cdot 63)$

Specimen II.			
$2 \cdot 542$	$215 \cdot 33$	$218 \cdot 56$	-
$7 \cdot 141$	$213 \cdot 51$	$214 \cdot 28$	$221 \cdot 60$
$18 \cdot 53$	$208 \cdot 94$	$209 \cdot 40$	$221 \cdot 35$
$33 \cdot 62$	$203 \cdot 89$	$204 \cdot 16$	$221 \cdot 46$
$43 \cdot 57$	$200 \cdot 91$	$201 \cdot 03$	$221 \cdot 59$
$58 \cdot 22$	$197 \cdot 34$	$197 \cdot 45$	$(221 \cdot 17)$
$76 \cdot 83$	$291 \cdot 32$	$193 \cdot 35$	-
$80 \cdot 00$	$192 \cdot 67$	$192 \cdot 70$	-

Sodium pimelate.
Run 2. Cell S. $\kappa=0.658$.

Sodium suberate.

$3 \cdot 370$	$200 \cdot 19$	$202 \cdot 27$	-
$7 \cdot 000$	$197 \cdot 81$	$198 \cdot 96$	$213 \cdot 16$
$13 \cdot 08$	$194 \cdot 27$	$195 \cdot 16$	$213 \cdot 32$
$26 \cdot 86$	$188 \cdot 81$	$189 \cdot 23$	$213 \cdot 46$
$43 \cdot 48$	$184 \cdot 19$	$184 \cdot 38$	$213 \cdot 65$
$61 \cdot 99$	$180 \cdot 21$	$180 \cdot 33$	$(214 \cdot 82)$
$77 \cdot 25$	$177 \cdot 46$	$177 \cdot 56$	-

$\mu_{0}^{n}=\mu_{c}+205 \cdot 7 C^{0.370} ;$
$\mu_{0}^{n}=199 \cdot 69 ; l_{0} \mathrm{X}^{\prime \prime}=50 \cdot 1$.
Run 1. Cell V. $\kappa=0.640$. Specimen I.

Run 2. Cell S. $\kappa=0.654$.
Specimen II.

$2 \cdot 995$	$192 \cdot 55$	$195 \cdot 15$	-	$2 \cdot 781$	$188 \cdot 30$	$191 \cdot 01$	-
$7 \cdot 012$	$189 \cdot 21$	$190 \cdot 01$	$205 \cdot 34$	$7 \cdot 001$	$184 \cdot 55$	$185 \cdot 38$	$199 \cdot 33$
$17 \cdot 72$	$184 \cdot 19$	$184 \cdot 59$	$205 \cdot 13$	$11 \cdot 12$	$182 \cdot 59$	$183 \cdot 26$	$199 \cdot 82$
$35 \cdot 51$	$178 \cdot 65$	$178 \cdot 95$	$205 \cdot 43$	$16 \cdot 81$	$180 \cdot 07$	$180 \cdot 48$	$199 \cdot 78$
57.89	$174 \cdot 02$	$174 \cdot 09$	$205 \cdot 74$	$32 \cdot 14$	$175 \cdot 05$	$175 \cdot 10$	$19 \cdot 64$
$75 \cdot 01$	$171 \cdot 01$	$171 \cdot 04$	-	$51 \cdot 06$	$170 \cdot 65$	$170 \cdot 69$	$199 \cdot 82$
$92 \cdot 23$	$168 \cdot 58$	$168 \cdot 61$	-	$75 \cdot 12$	$166 \cdot 48$	$166 \cdot 50$	-
$100 \cdot 2$	$167 \cdot 76$	$167 \cdot 77$	-	$97 \cdot 57$	$162 \cdot 69$	$162 \cdot 69$	-

The influence of various values of K_{2} on the corrected values of the conductivity is shown in Table III for one run (No. 1) with sodium malonate. These results show clearly that only a very approximate value of K_{2} is necessary.

Table III.

C		$10^{6} K_{2}$	μ, corr. $10^{6} K_{2}$	$10^{6} K_{2}$	C		$10^{6} K_{2}$	$\mu, ~ c o r r$. 10^{6} K_{2}	$10^{6} K_{2}$
$\times 10^{4}$.	μ, obs.	$=2$.	$=3$.	= 4 .	$\times 10^{4}$.	μ, obs.	$=2$.	= 3 .	$=4$.
$1 \cdot 737$	$219 \cdot 17$	$225 \cdot 57$	$224 \cdot 45$	224-14	$37 \cdot 73$	$202 \cdot 96$	$203 \cdot 16$	203.14	$203 \cdot 12$
5.148	217.11	$218 \cdot 90$	$218 \cdot 76$	$218 \cdot 69$	$57 \cdot 56$	$197 \cdot 37$	$197 \cdot 61$	$197 \cdot 60$	$197 \cdot 59$
10.73	$213 \cdot 87$	$214 \cdot 69$	$214 \cdot 63$	214.57	$73 \cdot 35$	194.21	$194 \cdot 26$	$194 \cdot 26$	$194 \cdot 26$
$22 \cdot 20$	208.41	$208 \cdot 87$	$208 \cdot 83$	208•77	$107 \cdot 0$	189.21	$189 \cdot 21$	189•21	189.21

The values at round concentrations, obtained with the aid of a flexible spline, are collected in Table IV for convenience of reference and for comparison with other published data. The concentrations, somewhat extended, used by Kohlrausch and others, have been employed.

Table IV.

$C \times 10^{4}$.	Malonate.	Succinate.	Glutarate.	Adipate.	Pimelate.	Suberate.
$5 \cdot 0$	$219 \cdot 10$	216.35	$210 \cdot 30$	$192 \cdot 40$	187-25	$184 \cdot 65$
$10 \cdot 0$	$215 \cdot 30$	$213 \cdot 59$	196.90	$184 \cdot 48$	$183 \cdot 84$	$181 \cdot 30$
$20 \cdot 0$	209.92	$208 \cdot 90$	$191 \cdot 65$	$183 \cdot 72$	$178 \cdot 18$	$176 \cdot 75$
$30 \cdot 0$	$205 \cdot 81$	205•19	$187 \cdot 85$	$180 \cdot 30$	$175 \cdot 75$	$173 \cdot 57$
$40 \cdot 0$	$202 \cdot 39$	202 10	$185 \cdot 06$	177.65	$173 \cdot 10$	$170 \cdot 98$
$50 \cdot 0$	199.55	$199 \cdot 31$	$182 \cdot 65$	$175 \cdot 50$	$170 \cdot 90$	$168 \cdot 85$
$60 \cdot 0$	$197 \cdot 12$	$196 \cdot 84$	$180 \cdot 50$	$173 \cdot 70$	$168 \cdot 99$	$167 \cdot 00$
$70 \cdot 0$	$194 \cdot 93$	$194 \cdot 58$	$178 \cdot 70$	$172 \cdot 03$	$167 \cdot 33$	$165 \cdot 40$
$80 \cdot 0$	$193 \cdot 06$	$192 \cdot 55$	$177 \cdot 03$	$170 \cdot 35$	$166 \cdot 02$	$164 \cdot 05$
$90^{\circ} 0$	$191 \cdot 35$	$190 \cdot 90$	175.62	$168 \cdot 90$	$166 \cdot 64$	$162 \cdot 83$
$100 \cdot 0$	$190 \cdot 00$	$189 \cdot 40$	174.38	$167 \cdot 66$	$163 \cdot 42$	$161 \cdot 65$

The True Primary Dissociation Constants. $-\Lambda_{e}$ has been deduced from the relation $\Lambda_{e} \mathrm{H}_{2} \mathrm{~A}=$ $\Lambda_{c^{\prime \prime}} \mathrm{HCl}-\Lambda_{c^{\prime \prime}} \mathrm{NaCl}+\Lambda_{c^{\prime \prime}} \mathrm{NaHA}$, where $c^{\prime \prime}$ is the ionic concentration, for the calculation of which two approximations were sufficient (compare Part VI, J., 1932, 2837) except for malonic acid where three were required. This expression reduces, after substitution of our experimental values for NaCl and HCl (Parts IV and V, J., 1931, $1715 ; 1932,400$), to $\Lambda_{e} \mathrm{H}_{2} \mathrm{~A}=297.49+$ $117 \cdot 4 c^{\prime \prime 0.551}-1380 c^{\prime \prime 0.929}+\Lambda_{0} \mathrm{NaHA}-x c^{\prime \prime 0.5}$. The last two terms of this expression refer to the acid salt, $\Lambda_{0} \mathrm{NaHA}=\Lambda_{c^{\prime}} \mathrm{NaHA}+x c^{\prime \prime 0.5} ; \Lambda_{0} \mathrm{NaHA}=l_{0 \mathrm{Na} \cdot}+l_{0 \mathrm{HA}^{\prime}}$, and for malonic, succinic, glutaric, and adipic acids $l_{0 \mathrm{HA}^{\prime}}$ was assumed to be equal to that of the corresponding amic acid ion, whilst for pimelic and suberic acids it was calculated from the relation $l_{0 \mathbf{H A}^{\prime}}=$ $0.53 l_{0} \mathrm{~A}^{\prime \prime}$. The value of x was derived from the Debye-Hückel-Onsager equation which at 25° reduces to $\Lambda_{0}=\Lambda_{c^{\prime \prime}}-\left(0 \cdot 228 \Lambda_{0}+59 \cdot 8\right) c^{\prime \prime 0} \cdot 5$ (compare Hartley, Ann. Reports, 1930, 27, 331 ; J., 1932, 406). This expression applies to all the normal acids, where $c^{\prime \prime}$ is below 1×10^{-3}. For malonic acid, $c^{\prime \prime}$ is $c a .0 \cdot 0035 N$ at the highest concentration, which is somewhat outside the range of its valid applicability, and this doubtless accounts for the slight decrease of $K_{1 \text {, therm. }}$. at the highest concentrations. The values deduced for Λ_{0} and x are collected in Table V.

Table V.
Sodium Hydrogen Salts.

Acid	Malonic.	Succinic	Glutaric	Adip	Pimeli	
Λ_{0}	$85 \cdot 3$	$81 \cdot 3$	$79 \cdot 8$	78.4	76.4	$74 \cdot 9$
x	79-25	$78 \cdot 35$	$77 \cdot 99$	$77 \cdot 68$	$77 \cdot 22$	76.88

In the tabulated results for the acids (Table VI, in which cl. and th. = class. and therm. respectively), C is the concentration in g.-mols./l., μ, obs. is the molecular conductivity to which no solvent correction has been applied (compare Part VI, J., 1932, 2834), $K_{1 .}$ class. is the Ostwald ionisation constant, $c^{\prime \prime}$ is the ionic concentration, and $K_{1, \text { therm, }}$, is the true dissociation constant deduced from the equation $\log K_{1, \text { therm. }}=\log K_{1}{ }^{\prime}-1.010 c^{\prime \prime}{ }^{5 \cdot 5}$, where $K_{1}{ }^{\prime}$ is the dissociation constant computed from the degree of dissociation $\alpha=\Lambda_{c} / / \Lambda_{c}$. The values of $K_{1, \text { class. }}$, although having little significance according to modern electrochemical views since they should, and do, vary with concentration, are included for comparison with old data, and average values have been computed over the higher concentration range where the variation is least. The choice of the values of $K_{1, \text { therm. }}$. collected for the calculation of the mean has been influenced by the following considerations. Theory requires that for a monobasic acid $K_{1, \text { class. }}$ should increase with rising concentration, but in the present instance, owing to the attendant secondary ionisation, $K_{1, \text { class. }}$ falls rapidly at first and then commences to rise at a concentration of ca. $0.003-0.004 N$, whereat it may be assumed that the effect of secondary ionisation is negligible. Hence the values of $K_{1, \text { class. }}$ and consequently of $K_{1 \text {, therm. possess significance from our view- }}$ point only after $K_{1, \text { therm. }}$ has passed the minimum.

Table VI.
 True Primary Dissociation Constants.

Malonic acid ($M=104 \cdot 03 ; \Lambda_{0}=383 \cdot 5$).
Run 1. Cell R. $\kappa=0.691$. Specimen I.

62	357•04	(2•047)	$372 \cdot 34$	$1 \cdot 5180$	(2.081)	58.79	153	$1 \cdot 506$	378	$23 \cdot 492$	1.397
$7 \cdot 541$	$282 \cdot 37$	(1.550)	$382 \cdot 06$	$2 \cdot 8604$	(1	84.72	$131 \cdot 24$	$1 \cdot 510$	377	$29 \cdot 4873$	$1 \cdot 391$
$22 \cdot 28$	211.44	(1.513)	$380 \cdot 20$	12.3861	(1.430)	$107 \cdot 0$	119.63	1.514	$376 \cdot 27$	34.0201	385
$33 \cdot 93$	$184 \cdot 62$	(1•502)	$379 \cdot 30$	$16 \cdot 4614$	(1-412)	$122 \cdot 4$	$113 \cdot 45$	1.521	375•77	$36 \cdot 8767$	$1 \cdot 385$
Run 2. Cell Q. $\kappa=0.680$. Specimen II.											
$3 \cdot 206$	$327 \cdot 67$	(1-607)	$382 \cdot 07$	$2 \cdot 8070$	(1.593)	29.94	191.95	(1-488)	$379 \cdot 60$	$15 \cdot 4945$	
$5 \cdot 262$	$301 \cdot 96$	(1.534)	$381 \cdot 77$	$4 \cdot 2586$	(1.501)	$46 \cdot 03$	$165 \cdot 58$	1.507	$378 \cdot 72$	$20 \cdot 5962$	1.407
10.43	$260 \cdot 56$	(1-502)	$381 \cdot 18$	$7 \cdot 2958$	(1-414)	55•19	$155 \cdot 10$	$1 \cdot 516$	$378 \cdot 21$	23-1634	$1 \cdot 407$
$15 \cdot 40$	$235 \cdot 21$	$(1 \cdot 498)$	$380 \cdot 70$	$9 \cdot 7385$	(1-413)	$65 \cdot 86$	$145 \cdot 24$	$1 \cdot 518$	377•11	$25 \cdot 9147$	-405

Run 3. Cell V. $\kappa=0.615$. Specimen I.

$2 \cdot 550$	$338 \cdot 19$	($1 \cdot 663$)	$382 \cdot 19$	$2 \cdot 2562$	(1.675)	15.03	$239 \cdot 81$	(1-568)	$380 \cdot 75$	$9 \cdot 4680$	($1 \cdot 500$)
$5 \cdot 163$	$305 \cdot 04$	(1-597)	$381 \cdot 79$	4•1250	(1.564)	$42 \cdot 50$	$170 \cdot 25$	1.506	378.95	$19 \cdot 0912$	1.407
$8 \cdot 702$	$274 \cdot 71$	(1.574)	$381 \cdot 37$	$6 \cdot 2680$	(1:523)	70.96	$141 \cdot 91$	$1 \cdot 507$	377-56	26.6715	$1 \cdot 392$
							M	$1 \cdot 513$		Mea	$1 \cdot 397$

Succinic acid ($M=118 \cdot 06 ; \Lambda_{0}=379 \cdot 5$).
Run 1. Cell Q. $\kappa=0.615$. Specimen I.

$1 \cdot 375$	$191 \cdot 85$	$(7 \cdot 107)$	$378 \cdot 55$	$0 \cdot 6967$	$(7 \cdot 130)$	$51 \cdot 95$	$41 \cdot 25$	$6 \cdot 888$	$377 \cdot 50$	$5 \cdot 6773$
$6 \cdot 019$	$107 \cdot 85$	$(6 \cdot 791)$	$378 \cdot 31$	$1 \cdot 7159$	$(6 \cdot 637)$	$63 \cdot 81$	$37 \cdot 49$	$6 \cdot 909$	$377 \cdot 38$	$6 \cdot 3384$
$12 \cdot 38$	$79 \cdot 03$	$(6 \cdot 779)$	$378 \cdot 13$	$2 \cdot 5865$	$(6 \cdot 584)$	$82 \cdot 39$	$33 \cdot 31$	$6 \cdot 957$	$377 \cdot 21$	$7 \cdot 2748$
$\mathbf{2 4 \cdot 0 9}$	$58 \cdot 65$	$(6 \cdot 806)$	$377 \cdot 90$	$3 \cdot 7386$	$(6 \cdot 566)$	$102 \cdot 1$	$30 \cdot 10$	$6 \cdot 973$	$377 \cdot 04$	$8 \cdot 1859$
$6 \cdot 613$										

Run 2. Cell R. $\kappa=0 \cdot 624$. Specimen II.

$3 \cdot 443$	$137 \cdot 53$	$(7 \cdot 092)$	$378 \cdot 41$	$1 \cdot 2514$	$(6 \cdot 961)$	$46 \cdot 49$	$43 \cdot 73$	$6 \cdot 897$	$377 \cdot 59$	$5 \cdot 2617$	$6 \cdot 639$
$9 \cdot 942$	$87 \cdot 68$	$(6 \cdot 900)$	$378 \cdot 19$	$2 \cdot 3048$	$(6 \cdot 714)$	$77 \cdot 27$	$34 \cdot 46$	$6 \cdot 996$	$377 \cdot 25$	$7 \cdot 0530$	$6 \cdot 650$
$17 \cdot 71$	$67 \cdot 67$	$(6 \cdot 852)$	$378 \cdot 01$	$3 \cdot 1701$	$(6 \cdot 632)$	$95 \cdot 76$	$31 \cdot 10$	$7 \cdot 004$	$377 \cdot 10$	$7 \cdot 8968$	$6 \cdot 648$
$34 \cdot 45$	$49 \cdot 79$	$(6 \cdot 824)$	$377 \cdot 73$	$4 \cdot 5406$	$(6 \cdot 560)$						

Run 3. Cell S. $\kappa=0 \cdot 626$. Specimen I.

$1 \cdot 890$	$174 \cdot 35$	$(7 \cdot 242)$	$378 \cdot 51$	$0 \cdot 8708$	$(7 \cdot 278)$	$18 \cdot 95$	$65 \cdot 77$	$(6 \cdot 885)$	$377 \cdot 99$	$3 \cdot 2972$	$(6 \cdot 659)$
$7 \cdot 440$	$100 \cdot 02$	$(7 \cdot 017)$	$378 \cdot 27$	$1 \cdot 9670$	$(6 \cdot 843)$	$37 \cdot 90$	$47 \cdot 76$	$6 \cdot 866$	$377 \cdot 66$	$4 \cdot 8702$	$6 \cdot 622$
$10 \cdot 34$	$86 \cdot 16$	$(6 \cdot 895)$	$378 \cdot 19$	$2 \cdot 3558$	$(6 \cdot 706)$	$64 \cdot 48$	$37 \cdot 47$	$6 \cdot 975$	$377 \cdot 35$	$6 \cdot 4922$	$6 \cdot 653$

Mean 6.941 Mean 6.626

Glutaric acid $\left(M=132 \cdot 06 ; \Lambda_{0}=378 \cdot 0\right)$.
Run 1. Cell Q. $\kappa=0.500$. Specimen I.

$1 \cdot 056$	$194 \cdot 04$	$(5 \cdot 718)$	$377 \cdot 12$	$0 \cdot 5434$	$(5 \cdot 671)$	$46 \cdot 46$	$36 \cdot 31$	$4 \cdot 721$	$376 \cdot 28$	$4 \cdot 4936$	$4 \cdot 530$
$5 \cdot 268$	$99 \cdot 65$	$(4 \cdot 972)$	$376 \cdot 92$	$1 \cdot 3927$	$(4 \cdot 870)$	$61 \cdot 89$	$31 \cdot 66$	$4 \cdot 740$	$376 \cdot 17$	$5 \cdot 2095$	$4 \cdot 538$
$11 \cdot 18$	$71 \cdot 07$	$(4 \cdot 867)$	$376 \cdot 77$	$2 \cdot 1089$	$(4 \cdot 740)$	$81 \cdot 04$	$27 \cdot 84$	$4 \cdot 747$	$375 \cdot 95$	$6 \cdot 1420$	$4 \cdot 531$
$21 \cdot 54$	$52 \cdot 47$	$(4 \cdot 816)$	$376 \cdot 59$	$2 \cdot 9994$	$(4 \cdot 666)$	$100 \cdot 5$	$25 \cdot 13$	$4 \cdot 756$	$375 \cdot 85$	$6 \cdot 6709$	$4 \cdot 533$

Run 2. Cell R. $\kappa=0.615$. Specimen II.

$3 \cdot 952$	114.81	(5•229)	376.96	$1 \cdot 2029$	(5•131)	34.75	$41 \cdot 74$	(4.763)	$376 \cdot 39$	$3 \cdot 9793$	(4.587)
$10 \cdot 10$	74.52	$(4 \cdot 887)$	$376 \cdot 78$	$2 \cdot 0622$	(4.761)	$47 \cdot 23$	35.98	$4 \cdot 728$	$376 \cdot 24$	$4 \cdot 6633$	4.541
18-16	56.70	$(4 \cdot 864)$	$376 \cdot 62$	$2 \cdot 8234$	(4.658)	$79 \cdot 17$	$25 \cdot 28$	4.771	$375 \cdot 84$	$6 \cdot 8036$	$4 \cdot 535$
							Mea	$4 \cdot 745$		Me	$4 \cdot 535$

Adipic acid ($M=146.08 ; \Lambda_{0}=\mathbf{3 7 6} \cdot 6$).
Run 1. Cell Q. $\kappa=0.600$. Specimen I.

983	187.05	(4.819)	$375 \cdot 71$	$0 \cdot 4894$	(4.786)	$42 \cdot 44$	$34 \cdot 35$	$3 \cdot 860$	374.98	$3 \cdot 8757$	$3 \cdot 720$
$5 \cdot 912$	$87 \cdot 32$	(4•138)	$375 \cdot 50$	$1 \cdot 3746$	(4.148)	$60 \cdot 01$	$29 \cdot 05$	$3 \cdot 869$	$374 \cdot 83$	$4 \cdot 6502$	$3 \cdot 716$
11.00	$64 \cdot 87$	(3.943)	$375 \cdot 38$	$1 \cdot 9007$	(3.854)	77-69	$25 \cdot 69$	3.879	$374 \cdot 69$	$5 \cdot 3259$	3.715
$21 \cdot 47$	47-38	(3-887)	$375 \cdot 22$	2.7105	(3.771)	96.66	23-14	$3 \cdot 888$	$374 \cdot 57$	$5 \cdot 9715$	$3 \cdot 715$
Run 2. Cell R. $\kappa=0.612$. Specimen II.											
2.501	$127 \cdot 02$	(4-317)	$375 \cdot 61$	0.8456	(4-228)	$50 \cdot 68$	31.48	$3 \cdot 864$	374-90	$4 \cdot 2557$	$3 \cdot 718$
188	74.62	(4.010)	$375 \cdot 45$	$1 \cdot 6275$	(3.946)	$69 \cdot 68$	$27 \cdot 05$	$3 \cdot 873$	$373 \cdot 74$	$5 \cdot 0297$	$3 \cdot 714$
$15 \cdot 33$	$55 \cdot 81$	(3.952)	$375 \cdot 31$	$2 \cdot 2795$	(3.844)	90.95	$23 \cdot 89$	$3 \cdot 882$	374•62	$5 \cdot 8000$	$3 \cdot 710$
$33 \cdot 23$	$38 \cdot 62$	(3•894)	$375 \cdot 08$	$3 \cdot 4212$	(3.762)			-8			

Table VI (contd.).

Pimelic acid $\left(M=160 \cdot 10 ; \Lambda_{0}=374 \cdot 6\right)$.
Run 1. Cell Q. $\kappa=0.540$. Specimen I.

$1 \cdot 249$	$171 \cdot 72$	$(4 \cdot 848)$	$373 \cdot 69$	$0 \cdot 5741$	$(4 \cdot 797)$	$51 \cdot 07$	$28 \cdot 70$	$3 \cdot 225$	$372 \cdot 97$	$3 \cdot 9305$	$3 \cdot 130$
$6 \cdot 495$	$78 \cdot 03$	$(3 \cdot 560)$	$373 \cdot 50$	$1 \cdot 3570$	$(3 \cdot 488)$	$69 \cdot 71$	$24 \cdot 84$	$3 \cdot 216$	$372 \cdot 85$	$4 \cdot 5483$	$3 \cdot 083$
$12 \cdot 54$	$56 \cdot 82$	$(3 \cdot 402)$	$373 \cdot 39$	$1 \cdot 9087$	$(3 \cdot 318)$	$89 \cdot 73$	$21 \cdot 78$	$3 \cdot 222$	372.72	$5 \cdot 2443$	$3 \cdot 087$
$25 \cdot 00$	$40 \cdot 65$	$(3 \cdot 302)$	$373 \cdot 23$	$2 \cdot 7228$	$(3 \cdot 202)$	$110 \cdot 5$	$19 \cdot 71$	$3 \cdot 227$	$372 \cdot 60$	$5 \cdot 8416$	$3 \cdot 084$

Run 2. Cell R. $\kappa=0.552$. Specimen II.

$2 \cdot 561$	$121 \cdot 01$	$(3 \cdot 947)$	$373 \cdot 63$	$0 \cdot 8294$	$(4 \cdot 897)$	$20 \cdot 20$	$45 \cdot 03$	$(3 \cdot 313)$	$373 \cdot 29$	$2 \cdot 4531$	$(3 \cdot 219)$
$7 \cdot 898$	$71 \cdot 02$	$(3 \cdot 501)$	$373 \cdot 48$	$1 \cdot 5014$	$(3 \cdot 425)$	$36 \cdot 95$	$33 \cdot 65$	$(3 \cdot 276)$	$373 \cdot 10$	$3 \cdot 3325$	$(3 \cdot 167)$
$9 \cdot 214$	$65 \cdot 61$	$(3 \cdot 424)$	$373 \cdot 45$	$1 \cdot 6185$	$(3 \cdot 348)$	$45 \cdot 71$	$30 \cdot 25$	$3 \cdot 229$	$373 \cdot 03$	$3 \cdot 6905$	$3 \cdot 105$
$15 \cdot 15$	$52 \cdot 04$	$(3 \cdot 389)$	$373 \cdot 35$	$2 \cdot 1101$	$(3 \cdot 302)$	$79 \cdot 12$	$23 \cdot 17$	$3 \cdot 227$	$372 \cdot 78$	$4 \cdot 9176$	$3 \cdot 096$
								Mean $3 \cdot 225$			Mean $3 \cdot 097$

Suberic acid ($M=174 \cdot 11 ; \Lambda_{0}=373 \cdot 1$).
Run 1. Cells R, J, V, N. $\kappa=0.595$. Specimen I.

1.502	$156 \cdot 16$	(4.525)	$372 \cdot 14$	$0 \cdot 6303$	(4.473)	N 11.02	59.89	(3.382)	$371 \cdot 93$	$1 \cdot 7745$	(3.302)
$4 \cdot 160$	$98 \cdot 20$	(3.911)	$372 \cdot 07$	$1 \cdot 0977$	(3•842)	J 45.05	29.67	3.095	371-55	$3 \cdot 5975$	$2 \cdot 987$
$6 \cdot 714$	76.71	(3.573)	$372 \cdot 00$	$1 \cdot 3845$	(3.500)	N 78.35	22.81	3-119	371-31	$4 \cdot 8131$	$2 \cdot 987$
$8 \cdot 602$	67.64	(3.453)	$371 \cdot 96$	$1 \cdot 5642$	(3-377)	V 91.36	$21 \cdot 16$	$3 \cdot 121$	$371 \cdot 23$	$5 \cdot 2046$	$2 \cdot 990$
11.62	57.98	(3.323)	371.93	1.8115	(3.242)	J $94 \cdot 82$	20.73	3•129	371-21	$5 \cdot 2951$	$2 \cdot 996$
Run 2. Cells R, J, V, N. $\kappa=0.612$. Specimen II.											
$2 \cdot 551$	130.31	(4.753)	$372 \cdot 11$	$0 \cdot 8790$	(4.683)	N 28.89	$38 \cdot 00$	(3.336)	$371 \cdot 66$	$3 \cdot 0928$	(3.229)
$5 \cdot 162$	$93 \cdot 02$	(4-272)	$372 \cdot 05$	1.2903	(3.973)	$\mathrm{J} 51 \cdot 41$	$27 \cdot 91$	$3 \cdot 109$	$371 \cdot 49$	$3 \cdot 8624$	$2 \cdot 998$
$9 \cdot 121$	$64 \cdot 80$	$(3 \cdot 330)$	$371 \cdot 95$	1.5854	(3.256)	69.26	24.21	$3 \cdot 118$	371-36	$4 \cdot 5153$	$2 \cdot 997$
						V 93.24	$21 \cdot 01$	3•133	$371 \cdot 22$	$5 \cdot 2771$	$3 \cdot 001$
							Mea	$3 \cdot 117$		Mea	2.994

The values of μ at round concentrations are given below :

$C \times 10^{4}$.	Malonic.	Succinic.	Glutaric.	Adipic.	Pimelic.	Suberic
1.0	$360 \cdot 00$	$200 \cdot 00$	$195 \cdot 00$	185.00	$175 \cdot 00$	$165 \cdot 00$
$5 \cdot 0$	304.50	$118 \cdot 50$	$103 \cdot 00$	$95 \cdot 00$	$85 \cdot 00$	$83 \cdot 00$
$10 \cdot 0$	$265 \cdot 70$	88-10	76.80	$67 \cdot 60$	$62 \cdot 90$	$62 \cdot 00$
$20 \cdot 0$	$219 \cdot 50$	$64 \cdot 05$	54.00	$48 \cdot 40$	44.95	$44 \cdot 20$
$30 \cdot 0$	$193 \cdot 15$	$53 \cdot 45$	$45 \cdot 40$	$40 \cdot 16$	$37 \cdot 30$	36.50
$40 \cdot 0$	$175 \cdot 55$	$46 \cdot 60$	39.45	$35 \cdot 35$	$32 \cdot 40$	$31 \cdot 60$
$50 \cdot 0$	162.35	$41 \cdot 85$	$35 \cdot 20$	31.90	$29 \cdot 00$	$28 \cdot 40$
$60 \cdot 0$	$151 \cdot 80$	38.55	$31 \cdot 95$	$29 \cdot 06$	26.45	26.00
$70 \cdot 0$	$142 \cdot 75$	$35 \cdot 80$	$29 \cdot 40$	26.75	24.50	$23 \cdot 95$
$80 \cdot 0$	$135 \cdot 30$	$23 \cdot 70$	$27 \cdot 60$	25.03	23.05	$22 \cdot 65$
$90 \cdot 0$	$128 \cdot 35$	31.95	$26 \cdot 15$	$23 \cdot 80$	21.75	$21 \cdot 20$
$100 \cdot 0$	$121 \cdot 10$	$30 \cdot 80$	$25 \cdot 20$	22.90	$20 \cdot 65$	$20 \cdot 25$

The influence of changing the factor from 0.55 to 0.50 in the calculation of the mobility of the acid ion for the extreme case of malonic acid is shown in Table VII; the effect is small, and will be much smaller for the other normal dibasic acids.

Table VII.

$i_{0} \mathbf{H x}^{\prime}=0.50 \times 64.7=32.4 ; \Lambda_{0}=380 \cdot 4 ;$ Run 1.					
$C \times 10^{4}$.	μ, obs.	$K_{1, \text { class. }} \times 10^{3}$.	Λ_{e}.	$c^{\prime \prime} \times 10^{4}$.	$K_{1, \text { therm. }} \times 10^{3} . *$
$1 \cdot 626$	357-04	(2.333)	-	-	-
$7 \cdot 541$	282.37	(1-612)	-	-	-
22.28	211.44	(1.549)	-	-	-
$33 \cdot 93$	184.62	1.539	376.29	16.5928	(1.445)
$58 \cdot 79$	$153 \cdot 21$	1.539	375.05	$23 \cdot 6858$	$1 \cdot 427$
$84 \cdot 72$	131.24	$1 \cdot 545$	$373 \cdot 97$	29.7317	1.425
$107 \cdot 0$	$119 \cdot 63$	1.544	373•16	34-3829	$1 \cdot 413$
122.4	$113 \cdot 45$	$1 \cdot 552$	$372 \cdot 65$	37-1851	$1 \cdot 416$
		Mean 1-544			Mean 1-420

[^1]Table VIII.
Sodium Hydrogen Salts.
Sodium hydrogen malonate ($M=126 \cdot 02$).
Run 1: Cell, Q ; κ of water, 0.592 ; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4} \ldots$	1.064	$6 \cdot 124$	$11 \cdot 01$	$22 \cdot 90$	43.68	$68 \cdot 67$	$85 \cdot 50$	$100 \cdot 2$
$\Lambda_{c} \ldots \ldots \ldots$.	$144 \cdot 20$	109.57	102.50	95.54	90.82	87.81	86.69	$85 \cdot 74$

Run 2: Cell, R; κ of water, $0 \cdot 604$; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4}$	\ldots	3.654	9.473	$18 \cdot 12$	$33 \cdot 34$	53.53	63.47
$\Lambda_{c} \ldots \ldots \ldots .$.	118.68	104.75	98.26	93.39	89.00	88.60	86.54

Run 3 : Cell, V; κ of water, 0.604 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4}$	\ldots	$2 \cdot 811$	$5 \cdot 801$	$9 \cdot 847$	$18 \cdot 85$	$32 \cdot 64$	$60 \cdot 20$
$\Lambda_{c} \ldots \ldots \ldots .$.	$121 \cdot 08$	$108 \cdot 44$	102.92	96.98	$92 \cdot 84$	$88 \cdot 44$	

Sodium hydrogen succinate ($M=140 \cdot 04$).
Run 1: Cell, V; κ of water, 0.615 ; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4}$	\ldots	1.706	10.74	19.45	45.39	88.32	113.7
$\Lambda_{c} \ldots \ldots \ldots .$.	120.84	94.88	91.74	88.36	85.47	84.29	

Run 2: Cell, Q; κ of water, 0.525 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4} \ldots$	$1 \cdot 306$	$6 \cdot 001$	$9 \cdot 570$	$16 \cdot 26$	$33 \cdot 01$	$52 \cdot 14$	$61 \cdot 37$	$70 \cdot 62$
$\Lambda_{c} \ldots \ldots \ldots .$.	$122 \cdot 84$	$99 \cdot 34$	$95 \cdot 79$	$92 \cdot 81$	$89 \cdot 54$	$87 \cdot 66$	$87 \cdot 02$	$86 \cdot 25$

Sodium hydrogen glutavate ($M=154 \cdot 04$).
Run 1: Cell, Q; κ of water, 0.615 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4} \ldots$	$0 \cdot 970$	$6 \cdot 031$	$10 \cdot 13$	$20 \cdot 18$	$42 \cdot 05$	$55 \cdot 66$	$71 \cdot 84$	$87 \cdot 76$
$\Lambda_{c} \ldots \ldots \ldots$.	133.74	$95 \cdot 29$	$91 \cdot 84$	$87 \cdot 60$	$84 \cdot 25$	$83 \cdot 05$	$81 \cdot 81$	$80 \cdot 84$

Run 2: Cell, R; κ of water, $0 \cdot 666$; Specimen of acid, II; Specimen of salt, II.
$\begin{array}{lllllllll}C \\ C & 10^{4} & \ldots & 3.608 & 10.40 & 18.46 & 36.69 & 72.91 & 86.23 \\ 107.8\end{array}$
$\begin{array}{lllllllll}\Lambda_{c} \ldots \ldots . . . & 103 \cdot 34 & 92 \cdot 20 & 88 \cdot 40 & 84 \cdot 50 & 81 \cdot 74 & 80 \cdot 89 & 79 \cdot 63\end{array}$
Sodium hydrogen adipate ($M=168 \cdot 07$).
Run 1: Cell, Q; κ of water, 0.540 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4}$	\ldots	1.545	$4 \cdot 629$	$13 \cdot 48$	$24 \cdot 20$	$47 \cdot 99$	$70 \cdot 54$	$92 \cdot 35$	$113 \cdot 9$
$\Lambda_{c} \ldots \ldots \ldots$	$124 \cdot 45$	$101 \cdot 38$	$89 \cdot 22$	$85 \cdot 49$	$82 \cdot 67$	$80 \cdot 98$	$79 \cdot 38$	$78 \cdot 94$	

Run 2: Cell, R; κ of water, 0.593 ; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4}$	\ldots	$1 \cdot 544$	$7 \cdot 369$	$14 \cdot 59$	$25 \cdot 74$	$52 \cdot 79$	$71 \cdot 93$	$106 \cdot 3$
$\Lambda_{c} \ldots \ldots \ldots$.	$125 \cdot 24$	$95 \cdot 31$	$88 \cdot 65$	$85 \cdot 82$	$82 \cdot 17$	$80 \cdot 89$	$79 \cdot 04$	

Sodium hydrogen pimelate ($M=182 \cdot 09$).
Run 1: Cell, R; κ of water, 0.540 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4}$	\ldots	$1 \cdot 280$	$6 \cdot 244$	$13 \cdot 04$	$26 \cdot 82$	$59 \cdot 36$	$78 \cdot 28$	$94 \cdot 61$	$113 \cdot 6$
$\Lambda_{c} \ldots \ldots \ldots .$.	$147 \cdot 25$	$95 \cdot 84$	88.64	$84 \cdot 81$	80.51	$\mathbf{7 9 \cdot 1 9}$	$\mathbf{7 8 . 1 5}$	$\mathbf{7 7 . 3 4}$	

Run 2: Cell, Q; к of water, $0 \cdot 612$; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4}$	\ldots	$2 \cdot 510$	$7 \cdot 102$	$11 \cdot 01$	$20 \cdot 15$	$39 \cdot 86$	$61 \cdot 78$	$85 \cdot 10$
$\Lambda_{c} \ldots \ldots \ldots \ldots$	$123 \cdot 98$	$92 \cdot 82$	$89 \cdot 84$	$86 \cdot 18$	$82 \cdot 75$	$80 \cdot 31$	$78 \cdot 58$	

Sodium hydrogen suberate ($M=196 \cdot 10$).
Run 1: Cells, R, J, V, N; κ of water, 0.671 ; Specimen of acid, I; Specimen of salt, I.

$C \times 10^{4}$	\ldots	1.352	3.331	$6 \cdot 138$	8.934	$12 \cdot 12$	28.07	$49 \cdot 87$
$\Lambda_{c} \ldots \ldots \ldots$.	155.44	$132 \cdot 27$	99.01	90.94	86.64	81.41 J	79.56 N	78.41 V

$C \times 10^{4}$	\ldots	$66 \cdot 13$	86.38	110.8

$\Lambda_{c} \ldots \ldots \ldots . . \quad 78.25 \mathrm{~J} \quad 76.82 \mathrm{~N} \quad 75.04 \mathrm{~V}$
Run 2 : Cells, Q, J, V, N; κ of water, 0.652 ; Specimen of acid, II; Specimen of salt, II.

$C \times 10^{4} \ldots$	2.501	7.342	10.09	$13 \cdot 14$	21.12	35.51	54.98	77.61
$\Lambda_{c} \ldots \ldots . .$.	137.34	96.01	97.15	86.00 J	82.94 V	80.57 N	79.05 J	77.52 V

$C \times 10^{4} \quad \ldots \quad 99.92$
$\Lambda_{c} \ldots \ldots \ldots . . \quad 71 \cdot 88 \mathrm{~N}$
The experimental figures for the sodium hydrogen salts are collected in Table VIII; these were determined (a) to provide conductivity data for these substances, and (b) for the estimation
of approximate values of K_{2}, but no satisfactory results were obtained. No solvent correction has been applied, but this will be discussed in a future communication. The stock solutions were prepared by weighing sufficient of the acid to give an approximately $N / 10$-solution and then adding the calculated quantity of the disodium salt.

Correction.-The work described in Parts I and II (loc. cit.), which includes malonic acid, is subject to the following errors and criticisms : (1) Subtraction of the solvent correction for the acids-no solvent correction is necessary; (2) the density factor in the calculations was reversed; (3) the use of the normal solvent correction for the disodium salts--the correct method of application of a combined solvent hydrolysis correction is described in the present paper; (4) the values for Λ_{0} of the acids are high for reasons given in footnote on p .22 ; (5) values of $K_{1 \text {, class. }}$ are given at round (interpolated) concentrations : the correct procedure is to use the actual experimental concentrations and to calculate the true dissociation constants, $K_{1, \text { therm. }}$.

The original results must therefore now be regarded as very approximate, and revised figures for all the acids, calculated in accordance with the methods described in this paper, will be published in the near future.

The authors' thanks are due to the Royal Society and Imperial Chemical Industries, Ltd., for grants.

Woolwich Polytechnic, London, S.E. 18.
University College, Southampton.

[^0]: * There is an error in the calculations of the mobility of the acid ion from the limiting conductivity of the disodium salt given in Parts I and II (J., 1929, 1476, 1487). The limiting ionic conductivity, i.e., $l_{0} \mathrm{X}^{\prime \prime}$, of the bivalent ion is derived from the limiting equivalent conductivity of the disodium salt by subtraction of the mobility of the sodium ion (compare Glasstone, "The Electrochemistry of Solutions," 1930, p. 68). The published figures for the limiting mobilities of the acid ions must therefore be halved, and the values of $K_{1 \text {. clas. }}$ appropriately corrected.

[^1]: * $K_{1, \text { therm. }}$ has been evaluated only over the range where the $K_{1, \text { class. }}$ figures are significant (see above, p. 26).

