7. The Dissociation Constants of Organic Acids. Part XI.* The Thermodynamic Primary Dissociation Constants of Some Normal Dibasic Acids.

By GEORGE H. JEFFERY and ARTHUR I. VOGEL.

IN spite of numerous determinations of the dissociation constants of dibasic acids by conductivity methods during the last 45 years, neither the primary nor the secondary constant of any such acid is known with accuracy, as judged by modern physicochemical standards.

^{*} The paper entitled "The Determination of the Thermodynamic Dissociation Constant of Benzoic Acid, at 25° , from Conductivity Measurements" (*Phil. Mag.*, 1934, **18**, 901) is regarded as Part X; this contains a review of our method for the determination of the true dissociation constants of monobasic acids.

The present communication describes the evaluation of the true primary dissociation constants of certain dibasic acids. The secondary dissociation constants cannot at present be satisfactorily calculated from conductivity data alone (compare Wegscheider, Monatsh., 1902, 23, 599; Luther, Z. Elektrochem., 1907, 13, 296; Chandler, J. Amer. Chem. Soc., 1908, 30, 709; Drucker, Z. physikal. Chem., 1920, 96, 405; Paul, *ibid.*, 1923, 110, 434, for methods involving certain arbitrary assumptions); subsidiary transport-number data (compare Sherrill and Noyes, J. Amer. Chem. Soc., 1926, 48, 1861) or other data obtainable by potentiometric methods are necessary, and these, together with the method of computation, will be discussed in a later paper.

The chief difficulties in the evaluation of the primary dissociation constants are : (1) The determination of the limiting mobility of the acid ion, $l_{0 \text{ HX}'}$; direct determination from conductivity data of the acid salt, NaHX or KHX, is impossible owing to the secondary dissociation HX' \implies H' + X''; (2) the correction of the conductivity data relating to the disodium salt for hydrolysis. The latter difficulty has been completely overcome, and a method is described (see p. 24) for the application of a combined hydrolysis and solvent correction; μ_0 for the disodium salts can then be calculated by the "n" formula. A very close approximation to the limiting mobility of the acid ion can be obtained as follows: $l_{0 \text{ HX}'}$, which for normal dibasic acids is $l_{0 \text{ CO}_2\text{H}^1(\text{CH}_2)_2 \cdot \text{CO}_2'}$ (Part IX, J., 1934, 1101). The results for the limiting *equivalent* conductivities of the sodium amate and the derived dibasic acid salt, together with the corresponding limiting ionic mobilities, are collected in Table I ($l_{0 \text{ Na}} = 49.8$; Part IV, J., 1931, 1715).

TABLE I.

			Limiting ionic me	obility, l _o , for	
	Equivalent cond	uctivity, Λ_0 , for	NH, CO (CH,), CO,',	$CO_{2}^{\prime} (CH_{2})_{x} CO_{2}^{\prime}$	A
x.	NH ₂ ·CO·(CH ₂) _x ·CO ₂ Na.	$CO_2Na \cdot (CH_2)_x \cdot CO_2Na.$	A	B.	\overline{B} .
1	85.31	114.46	35.2	64.7	0.549
2	81.29	110.75	31.5	60.9	0.517
3	79.83	106.67	30.0	56.9	0.527
4	78.38	102.78	28.6	$52 \cdot 9$	0.540
				Mean	0.533

It will be seen that there is a simple connexion between the mobility of the amic and hence of the acid ion and the corresponding neutral-salt ion; the relationship $l_{0 \text{ HX}'} = 0.53 l_{0 \text{ X}''}$ may therefore be employed for the calculation of the limiting mobility of the acid ion from that of the derived bivalent ion * (compare Chandler, *J. Amer. Chem. Soc.*, 1908, **30**, 709; also Part IX, *loc. cit.*). Slight variations of this factor do not appreciably affect the value of the true dissociation constant, $K_{1, \text{ therm.}}$ (compare p. 28 for malonic acid).

The true dissociation constant is computed in the usual manner (compare MacInnes, J. Amer. Chem. Soc., 1926, 48, 2068; MacInnes and Shedlovsky, *ibid.*, 1932, 54, 1432; Parts VI and VII, J., 1932, 2829; 1933, 1637), Λ_e being given by the expression $\Lambda_e H_2 A = \Lambda_{e''} \text{HCl} - \Lambda_{e''} \text{NaCl} + \Lambda_{e''} \text{NaHA}$, where c'' is the ionic concentration, and $\Lambda_{e''} \text{NaHA}$ is computed with the aid of the Debye-Hückel-Onsager equation (for details, see p. 26).

The final results for the thermodynamic dissociation constants and for Λ_0 are tabulated below.

Malonic	rm. $ imes 10^5$
Succinic 379.5 6.626 Pimelic 374.6 3° Glutaric 378.0 4.535 Suberic 373.1 2°	3·715 3·097 2·994

* There is an error in the calculations of the mobility of the acid ion from the limiting conductivity of the disodium salt given in Parts I and II (J., 1929, 1476, 1487). The limiting *ionic* conductivity, *i.e.*, $I_{0X''}$, of the bivalent ion is derived from the limiting *equivalent* conductivity of the disodium salt by subtraction of the mobility of the sodium ion (compare Glasstone, "The Electrochemistry of Solutions," 1930, p. 68). The published figures for the limiting mobilities of the acid ions must therefore be halved, and the values of $K_{1, \text{ class.}}$ appropriately corrected. These values are being employed as standards for the investigation of the various potentiometric methods available for the determination of dissociation constants, and the results will be communicated later. The early work of Ostwald, Walden, Voermann, Smith, Bethmann, and others during 1889—1904 on the classical dissociation "constants" of these acids must now be regarded as of very little quantitative value and is not discussed further.

It is necessary to reply to the serious criticisms made by Ives, Riley, and Linstead (J., 1932, 1093) on the work on malonic acid and other dibasic acids described by one of us in Parts I and II (loc. cit.). First, referring to the hydrolysis of the disodium salts, they state that "the existence of this hydrolysis introduces a very difficult problem, for it is, at present, impossible to measure this, with anything like the same degree of accuracy as that which can be attained in the measurement of the conductivity of the solutions. Neither can it be calculated from the conductivity data without an accurate knowledge of the mobilities of acid and normal ions," but this criticism has little significance now in view of the methods described in this paper. Secondly, they employ the now generally discarded methods, such as those depending on the Ostwald dilution formula, Kraus's and also Derick's methods, for the evaluation of Λ_0 by the extrapolation of the acid conductivity results, since they hold the view that the high values (approximately 20 units) yielded by extrapolation of the disodium salt data are due to hydrolysis. Although we admit that hydrolysis is undoubtedly present, we do not consider that the discrepancy is to be attributed entirely to this cause. The largest error has been introduced in their calculation of the mobility $l_{0 \text{ HX}'}$. The correct relation is $l_{0 \text{ HX}'} = 0.5 l_{0 \text{ X}''}$, which, for cyclohexane-1:1-diacetic acid (loc. cit., p. 1099), is $0.5 \times 42.5 = 21.25$ or $\Lambda_0 = 349.05 + 21.25 = 370.3$, if one employs Ives, Linstead, and Riley's figures, including Λ_0 for the disodium salt, the method of calculation of which is not described.

In view of the foregoing remarks and the fact that those authors have confined themselves to the primary Ostwald dissociation "constants," it would appear that, whilst their main theoretical conclusions may be correct, a determination of the *true* primary and secondary dissociation constants of these cyclic 1:1-diacetic acids is desirable.

EXPERIMENTAL.

Preparation of Materials.—Acids. The essential details have already been described (Vogel, J. 1934, 336). All operations were carried out in Pyrex vessels, and all solvents for recrystallisation, indicated in parentheses after the m. p., were of B.D.H. "A.R." purity.

Malonic acid. (I) Kahlbaum's acid. (II) Boots's acid. Both m. p. 136° (decomp.) [benzene-ether-light petroleum (b. p. 60-80°)].

Succinic acid. (I) Kahlbaum's acid. (II) Ex nitrile of m. p. 54°. Both m. p. 185–185.5° (acetone).

Glutaric acid. Two specimens, from two independent preparations of the nitrile (b. p. $149-150^{\circ}/14 \text{ mm.}$), both had m. p. $97\cdot5-98^{\circ}$ (chloroform).

Adipic acid. (I) Ethyl succinate, b. p. $113^{\circ}/22$ mm., was reduced with sodium and ethyl alcohol (compare Bennett and Mosses, J., 1931, 1697) to tetramethylene glycol, b. p. $127-129^{\circ}/12$ mm., which was successively converted into the dibromide (b. p. $82-84^{\circ}/12$ mm.) by constant b. p. hydrobromic acid and sulphuric acid (compare Kamm and Marvel, J. Amer. Chem. Soc., 1920, 42, 307), the dinitrile (b. p. $180-182^{\circ}/19$ mm.) by aqueous-alcoholic potassium cyanide, and into the acid by 50% sulphuric acid; m. p. $151\cdot5-152^{\circ}$ (acetone). (II) A commercial specimen, m. p. $151-152^{\circ}$ (acetone).

Pimelic acid. From two independent preparations of the dinitrile; b. p. 169-171°/15 mm., m. p. 106° (benzene-ether).

Suberic acid. From two independent preparations of the dinitrile; b. p. 178—180°/15 mm., m. p. 142° (acetone).

Disodium salts. With the exception of Boots's sodium malonate (specimen II), these were all prepared by adding the calculated quantity of sodium hydroxide solution, prepared from the A.R. solid and standardised against A.R. potassium hydrogen phthalate, to known weights of the pure acids, and were recrystallised from aqueous methyl (for the malonate and glutarate) or ethyl alcohol (for the other acids). Details of the preparations are tabulated below.

Disodium Salts.

	Na,	%•		Na,	%.
	Found.	Calc.		Found.	Calc.
Malonate (Boots's)	31.02	31.08	Adipate, from acid (I)	24.16	24•21
,, from acid (I)	31.06		,, (II)	$24 \cdot 20$	
Succinate, from acid (I)	28.45	28.38	Pimelate, from acid (I)	22.47	22.53
,, ,, (II)	28.37		,, ,, (II)	22.54	
Glutarate, from acid (I)	26.23	26.15	Suberate, from acid (I)	21.19	21.10
,, ,, (II)	26.14		,, ,, (II)	21.15	

Combined Hydrolysis and Solvent Correction for Disodium Salts.—In a solution of the disodium salt in "equilibrium" water, the most important equilibria are :

$$\begin{split} \mathrm{Na}_{2}\mathrm{X} &\rightleftharpoons 2\mathrm{Na}^{*} + \mathrm{X}'' \cdot \cdot \cdot \cdot \cdot (1); & \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{H}^{*} + \mathrm{OH}' \cdot \cdot \cdot \cdot \cdot (2); \\ \mathrm{H}_{2}\mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{*} + \mathrm{HCO}_{3}' \cdot \cdot \cdot \cdot (3); & \mathrm{X}'' + \mathrm{H}^{*}\mathrm{OH} \rightleftharpoons \mathrm{HX}' + \mathrm{OH}' \cdot \cdot \cdot (4). \end{split}$$

The secondary dissociation of the carbonic acid is neglected, as is also the secondary hydrolysis $HX' + H \cdot OH \implies H_2X + OH'$. The ions present are Na[•], H[•], OH', HCO_3' , HX', and X'', and since the solution is electrically neutral

$$[Na^{\bullet}] + [H^{\bullet}] = 2[X''] + [HX'] + [HCO_{3}'] + [OH'] (5)$$

and C = concn. of salt (g.-mols./l.) = [X'] + [HX']

Hence
$$\frac{[X''][H']}{(C - [X''])} = K_2 \text{ or } [X''] = \frac{K_2 C}{[H^*] + K_2} \cdot \cdot \cdot \cdot \cdot \cdot (9)$$

Further, if m is the total concentration of carbonic acid (in g.-mols./l.),

$$K_{c} = \frac{[\mathrm{H}^{\bullet}][\mathrm{HCO}_{3}']}{m - [\mathrm{HCO}_{3}']} \text{ or } [\mathrm{HCO}_{3}'] = \frac{K_{c}m}{[\mathrm{H}^{\bullet}] + K_{c}} \cdot \ldots \cdot (10)$$

Substituting in (5), and remembering that $[Na^{\bullet}] = 2C$, one obtains

$$C + [\mathbf{H}^{\bullet}] = \frac{K_2 C}{[\mathbf{H}^{\bullet}] + K_2} + \frac{K_w}{[\mathbf{H}^{\bullet}]} + \frac{K_c m}{[\mathbf{H}^{\bullet}] + K_c} \quad . \quad . \quad . \quad (11)$$

This expression is identical with equation (6) of Part VII (J., 1933, 1639) except that K_2 is substituted for K_a .

The solution of this equation of the fourth degree for [H^{*}] is that given in our previous paper (*loc. cit.*); expression (7) is used for those cases where $K_2m > 10^{-10}$, and expression (9) where $K_2m < 10^{-10}$. Our thanks are due to Mr. H. V. Lowry, M.A., for this deduction.

Having calculated [H^{*}], we can readily compute the other ionic concentrations, and the correction to be *added* to the observed specific conductivity is given by

$$\Delta \kappa = 10^{-3} \{ \Lambda_{\mathbf{X}''} 2(C - [\mathbf{X}'']) - \Lambda_{\mathbf{H}'} [\mathbf{H}^{\bullet}] - \Lambda_{\mathbf{OH}'} [\mathbf{OH}'] - \Lambda_{\mathbf{HCO}_3'} [\mathbf{HCO}_3'] - \Lambda_{\mathbf{HX}'} (C - [\mathbf{X}'']) \} \quad . \quad . \quad (12)$$

Sufficiently accurate values of K_2 for use in the application of the correction may be obtained directly, without any further calculation, from the potentiometric titration curve, determined with the hydrogen, quinhydrone, or glass electrode. For the actual calculations on the normal dibasic acids, K_2 was taken as 3×10^{-6} (compare Gane and Ingold, J., 1931, 2158), $K_c =$ 4.54×10^{-7} , $\Lambda_{\rm H} = 348.0$, $\Lambda_{\rm OH'} = 210.8$, $\Lambda_{\rm HCO_3'} = 46.9$, and $\Lambda_{\rm X''}$ and $\Lambda_{\rm HX'}$ were the preliminary values obtained by applying a normal solvent correction.

General Technique and Apparatus.—This was that described in earlier paper of this series. Four cells of the Hartley and Barrett type, two of silica, R (0.02586_3) and Q (0.02674_8), two of Pyrex, S (0.03422_8) and V (0.02781_5), and three Kohlrausch cells of Pyrex, J (0.2474_1), V (0.2499_0), and N (0.3330_4), were employed; the figures in parentheses are the corresponding cell constants. All measurements were carried out at $25^\circ \pm 0.01^\circ$.

or

25

The experimental results for the disodium salts with equilibrium water are given in Table II; κ is the specific conductivity of the water used, μ , obs. is the molecular conductivity after application of a normal solvent correction, μ , corr. that corrected by means of equation (12), μ_0^n is the value of the limiting molecular conductivity calculated by the "*n*" formula, the constants of which, together with that of the limiting mobility of the anion, $l_0 x^{n}$, are given at the head of the table. Molecular weights are based on atomic weights given in J., 1933, 361.

TABLE II.

Disodium Salts of Normal Dibasic Acids at 25°.

	Sodium	malonate		Sodium succinate.				Sodium glutarate.			
μ_0^n	$= \mu_c +$	403·5C ⁰	491;	$\mu_0{}^{m n}=\mu_c+648{}\cdot\!3C^{0{}\cdot\!635}$;				$\mu_0{}^n = \mu_c + 246.8 C^{0.393}$;			.393 ;
$\mu_0^n =$	= 228.92	; $l_0 x'' =$	64·7.	$\mu_0^{\dot{n}} =$	= 221.49	; $l_0 x'' =$	60·9.	$\mu_0^{n} =$	= 213.34	; l _{0 X"} =	= 56·9.
С	μ,	μ,		С	μ,	μ,		С	μ,	μ,	
\times 10 ⁴ .	obs.	corr.	μ_0^n .	imes 104.	obs.	corr.	μ_0^n .	\times 104.	obs.	corr.	μ_0 [*] .
Run 1	I. Cell	V. κ ==	0.615.	Run	I. Cell	V. κ ==	0.633.	Run	1. Cell	V. κ ==	0.630.
	Speci	men I.			Speci	men I.			Speci	men I.	
1.737	219.17	224.45		1.106	215.99	224.43		0.782	203.07	209.01	
5.148	217.11	218.76	228.74	5.674	214.09	215.36	221.40	5.491	198.79	199.94	213.35
10.73	213.87	214.63	228.70	13.64	210.98	211.40	221.24	9.777	195.94	196.98	213.17
22.20	208.41	208.83	228.80 990-16	33.92 50.97	203.05	204.00	221.54 221.73	18.99	191.73	192.20	213.03
57.56	197.37	197.60	(229.62)	63.06	196.30	195.21 196.37	$(222 \cdot 38)$	60.87	180.33	180.49	$213 \cdot 20$ $213 \cdot 72$
73.35	194.21	194.26	(213.17)	84.82	191.64	191.65	(222.75)	79.34	$177 \cdot 22$	$177 \cdot 27$	(214.15)
107.0	189.21	189.21	(232.63)	95.32	189.93	189.95		96.78	174.73	174.75	(214.63)
Run 2	2. Cell	S. κ ==	0.638.	Run	2. Cell	S. к ==	0.652.	Run	2. Cell	S. к ==	0.658.
	Specir	nen II.			Specir	nen II.			Specir	nen II.	
3.471	217.97	220.22		2.542	215.33	218.56		3.370	200.19	202.27	
8.308	215.50	216.51	228.86	7.141	213.51	214.28	221.60	7.000	197.81	198.96	$213 \cdot 16$
16.02	211.32	211.76	228.84	18.53	208.94	209.40	221.35	13.08	194.27	195.16	213.32
20.88	200.78	207.09	229.11	33'02 43:57	203.89	204.10	221.40	43.48	184.19	189.23	213.40
48.73	199.66	200.13 200.21	(229.72)	58.22	197.34	197.45	(221.17)	61.99	180.21	180.33	(214.82)
81.01	192.82	$192 \cdot 92$	(===;	76.83	291.32	193.35	` ′	77.25	177.46	177.56	` — `
92.48	191.14	191.20		80.00	192.67	192.70					
	Sodium	adipate.			Sodium	pimelate			Sodium	suberate	
110 ⁿ	$= \mu_0 +$	207.70	365 .	u."	$= \mu_{c} +$	205·7C*	370 ;	μ_0	$= \mu_c +$	213·5C ⁰	403 :
$\mu_0^{n} =$	= 205.36	; $l_{0 X''} =$	52.9.	$\mu_0^{n} =$	= 199.69	; l _{0 X"} ==	50.1.	$\mu_0^{n} =$	= 194 34	; l _{0 X"} ==	47.4.
Run l	l. Cell	V. $\kappa =$	0.623.	Run	I. Cell	V. κ ==	0.640.	Run 1	I. Cell	V. $\kappa =$	0.640.
	Speci	men I.			Speci	men I.			Speci	men I.	
1.087	194.35	199.23		1.873	189.61	193.18	100 50	1.416	187.20	191.14	104.04
5.140	191.03	192.27	205.34	5.951	185.61	186.28	199.72	5.828	182.37	183.64	194.34
26.84	180.93	181.25	205.15	23.56	131 93 177.59	177.96	199.83	21.85	175.84	176.19	194.21 194.26
43.95	176.67	176.79	$205 \cdot 41$	42.36	172.48	172.65	199.66	47.84	169.19	169.25	194.03
66.88	172.36	172.49	(205.85)	63.12	168.46	168.54	(199.97)	70.95	$165 \cdot 17$	165.21	194.51
$86.37 \\ 108.3$	169·43 166·73	$169.46 \\ 166.74$	(206.09)	82·95 100·7	165·54 163·32	$165.57 \\ 163.12$	(200.41)	87·65 99·49	162.95 161.64	162.97 161.64	194.60 (194.93)
Run	2 Cell :	s r=	0.654	Run	2 Cell	s r=	0.658	Run	2 Cell :	s r=	0.621
Itun 4	Specir	nen II.	0 00 1.	Itun	Specir	nen II.	0 000.	itun i	Specir	nen II.	0 021.
9.005	102.55	105.15		2.781	188.30	191.01		3.712	184.64	186.64	
$\frac{2}{7.012}$	189.21	190.01	205.34	7.001	184.55	185.38	199.33	9.013	181.14	181.68	194.33
17.72	184.19	184.59	205.13	11.12	182.59	$183 \cdot 26$	$199 \cdot 82$	19.01	176.99	$177 \cdot 29$	194.38
35.51	178.65	178.95	205.43	16.81	180.07	180.48	199.78	30.65	173.17	173.35	194.07
57.89 75.01	174.02	174.09	205.74	32·14 51·06	170.65	175.10	199.64 100.89	40·39 80·01	170.51	170.72	(193.87)
92.23	168.58	168.61		75.12	166.48	166.50		97.51	162.08	162.09	(195.33)
100.2	167.76	167.77		97.57	162.69	162.69					、/

The influence of various values of K_2 on the corrected values of the conductivity is shown in Table III for one run (No. 1) with sodium malonate. These results show clearly that only a very approximate value of K_2 is necessary.

m and a second s	TTT
IADLE	

			μ, corr.					μ, corr.	
С		106 K ₂	$10^{6} K_{2}$	$10^{6} K_{2}$	С		106 K2	106 K2	106 K,
imes 104.	μ , obs.	= 2.	== 3.	= 4.	\times 10 ⁴ .	μ, obs.	= 2.	= 3.	= 4.
1.737	219.17	$225 \cdot 57$	224.45	$224 \cdot 14$	37.73	202.96	$203 \cdot 16$	203.14	$203 \cdot 12$
5.148	$217 \cdot 11$	218.90	218.76	218.69	57.56	197.37	197.61	197.60	197.59
10.73	$213 \cdot 87$	214.69	214.63	214.57	$73 \cdot 35$	194.21	194.26	194.26	194.26
22.20	208.41	208.87	208.83	208.77	107.0	189.21	189.21	$189 \cdot 21$	189.21

The values at round concentrations, obtained with the aid of a flexible spline, are collected in Table IV for convenience of reference and for comparison with other published data. The concentrations, somewhat extended, used by Kohlrausch and others, have been employed.

TABLE IV.

$C \times 10^4$.	Malonate.	Succinate.	Glutarate.	Adipate.	Pimelate.	Suberate.
5.0	219.10	216.35	210.30	$192 \cdot 40$	187.25	184.65
10.0	215.30	$213 \cdot 59$	196.90	184.48	$183 \cdot 84$	181.30
20.0	209.92	208.90	191.65	183.72	178.18	176.75
30.0	$205 \cdot 81$	205.19	187.85	180.30	175.75	173.57
40.0	202.39	$202 \cdot 10$	185.06	177.65	$173 \cdot 10$	170.98
50.0	199.55	199.31	182.65	175.50	170.90	168.85
60.0	197.12	196.84	180.20	173.70	168.99	167.00
70·0	194.93	194.58	178.70	172.03	167.33	165.40
80.0	193.06	192.55	177.03	170.35	166.02	164.05
90.0	191.35	190.90	175.62	168.90	166.64	162.83
100.0	190.00	189.40	174.38	167.66	$163 \cdot 42$	161.65

The True Primary Dissociation Constants.— Λ_e has been deduced from the relation $\Lambda_e H_2 A = \Lambda_{c''} \text{HCl} - \Lambda_{c''} \text{NaCl} + \Lambda_{c''} \text{NaHA}$, where c'' is the ionic concentration, for the calculation of which two approximations were sufficient (compare Part VI, J., 1932, 2837) except for malonic acid where three were required. This expression reduces, after substitution of our experimental values for NaCl and HCl (Parts IV and V, J., 1931, 1715; 1932, 400), to $\Lambda_e H_2 A = 297 \cdot 49 + 117 \cdot 4c''^{0.551} - 1380c''^{0.929} + \Lambda_0 \text{ NaHA} - xc''^{0.5}$. The last two terms of this expression refer to the acid salt, $\Lambda_0 \text{ NaHA} = \Lambda_{c''} \text{ NaHA} + xc''^{0.5}$; $\Lambda_0 \text{ NaHA} = l_0 \text{ Na'} + l_0 \text{ HA'}$, and for malonic, succinic, glutaric, and adipic acids $l_0 \text{ HA'}$ was assumed to be equal to that of the corresponding amic acid ion, whilst for pimelic and suberic acids it was calculated from the relation $l_0 \text{ HA'} = 0.53l_0 \text{ A''}$. The value of x was derived from the Debye-Hückel-Onsager equation which at 25° reduces to $\Lambda_0 = \Lambda_{c''} - (0.228\Lambda_0 + 59 \cdot 8)c''^{0.5}$ (compare Hartley, Ann. Reports, 1930, 27, 331; J., 1932, 406). This expression applies to all the normal acids, where c'' is below 1×10^{-3} . For malonic acid, c'' is ca. 0.0035N at the highest concentration, which is somewhat outside the range of its valid applicability, and this doubtless accounts for the slight decrease of $K_{1, \text{ therm.}}$ at the highest concentrations. The values deduced for Λ_0 and x are collected in Table V.

TABLE V.

Sodium Hydrogen Salts.

			- 0			
Acid	Malonic.	Succinic.	Glutaric.	Adipic.	Pimelic.	Suberic.
Λ_0	85.3	81.3	79.8	78.4	76.4	74.9
x	79.25	78.35	77.99	77.68	77.22	76.88

In the tabulated results for the acids (Table VI, in which cl. and th. = class. and therm. respectively), C is the concentration in g.-mols./l., μ , obs. is the molecular conductivity to which no solvent correction has been applied (compare Part VI, J., 1932, 2834), $K_{1, class.}$ is the Ostwald ionisation constant, c'' is the ionic concentration, and $K_{1, \text{therm.}}$ is the true dissociation constant deduced from the equation log $K_{1, \text{therm.}} = \log K_1' - 1.010 \ c''^{0.5}$, where K_1' is the dissociation constant computed from the degree of dissociation $\alpha = \Lambda_{c''}/\Lambda_c$. The values of $K_{1, \text{class.}}$, although having little significance according to modern electrochemical views since they should, and do, vary with concentration, are included for comparison with old data, and average values have been computed over the higher concentration range where the variation is least. The choice of the values of $K_{1, \text{therm.}}$ collected for the calculation of the mean has been influenced by the following considerations. Theory requires that for a monobasic acid $K_{1, \text{class.}}$ should increase with rising concentration, but in the present instance, owing to the attendant secondary ionisation, $K_{1, \text{class.}}$ falls rapidly at first and then commences to rise at a concentration of ca. 0.003-0.004N, whereat it may be assumed that the effect of secondary ionisation is negligible. Hence the values of $K_{1, \text{therm.}}$ has passed the minimum.

TABLE VI.

True Primary Dissociation Constants.

$\times \begin{array}{c} C \\ \times 10^4. \end{array}$	μ, ob s .	$\stackrel{K_{1, { m cl.}}}{ imes 10^3}.$	Λ_{e} .	$\times \frac{c^{\prime\prime}}{10^4}$.	$\stackrel{K_{1, \text{ th.}}}{\times 10^3}$.	$ imes {}^C_{ ext{104}}.$	μ, obs.	$\stackrel{K_{ m 1, cl.}}{ imes 10^3}.$	$\Lambda_{\mathbf{e}}.$	$ extstyle imes ilde{ extstyle ily ilde{ extstyle ilde{ extstyle ilde{ extstyle ilde{ $	$\stackrel{K_{1, \text{ th.}}}{ imes 10^3}.$
			M	alonic ac	id (M = 1)	04·03; ∧	$A_0 = 383$	•5).			
$1.626 \\ 7.541 \\ 22.28 \\ 33.93$	$357.04 \\ 282.37 \\ 211.44 \\ 184.62$	(2.047) (1.550) (1.513) (1.502)	Ru 372·34 382·06 380·20 379·30	n 1. Ce 1·5180 2·8604 12·3861 16·4614	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.691. 58.79 84.72 107.0 122.4	Specime 153·21 131·24 119·63 113·45	n 1. 1·506 1·510 1·514 1·521	378·15 377·08 376·27 375·77	$\begin{array}{c} 23 \cdot 4922 \\ 29 \cdot 4873 \\ 34 \cdot 0201 \\ 36 \cdot 8767 \end{array}$	$1.397 \\ 1.391 \\ 1.385 \\ 1.385 \\ 1.385$
			Ru	n 2. Cel	1 Q. $\kappa =$	0.680.	Specime	n II.			
$3 \cdot 206 \\ 5 \cdot 262 \\ 10 \cdot 43 \\ 15 \cdot 40$	327.67 301.96 260.56 235.21	(1.607) (1.534) (1.502) (1.498)	382.07 381.77 381.18 380.70	2.8070 4.2586 7.2958 9.7385	$(1\cdot 593)$ $(1\cdot 501)$ $(1\cdot 414)$ $(1\cdot 413)$	$\begin{array}{c} 29 \cdot 94 \\ 46 \cdot 03 \\ 55 \cdot 19 \\ 65 \cdot 86 \end{array}$	$191.95 \\ 165.58 \\ 155.10 \\ 145.24$	(1.488) 1.507 1.516 1.518	379.60 378.72 378.21 377.71	$\begin{array}{r} 15{\cdot}4945\\ 20{\cdot}5962\\ 23{\cdot}1634\\ 25{\cdot}9147\end{array}$	$(1\cdot414) \\ 1\cdot407 \\ 1\cdot407 \\ 1\cdot405$
			Rı	in 3. Ce	ll V. $\kappa =$	0.615.	Specime	en I.			
$2.550 \\ 5.163 \\ 8.702$	$338.19 \\ 305.04 \\ 274.71$	$(1.663) \\ (1.597) \\ (1.574)$	$382 \cdot 19$ $381 \cdot 79$ $381 \cdot 37$	$2 \cdot 2562 \\ 4 \cdot 1250 \\ 6 \cdot 2680$	(1.675) (1.564) (1.523)	$15.03 \\ 42.50 \\ 70.96$	239·81 170·25 141·91 Mean	(1·568) 1·506 1·507 n 1·513	380·75 378·95 377·56	9·4680 19·0912 26·6715 Mea	(1.500) 1.407 1.392 n 1.397
			St	uccinic ac	id $(M = 1$	18·06; A	$\Lambda_0 = 379$).5).			
			R	un 1. Ce	ell Q. к ==	0.615.	Specime	en I.			
$ \begin{array}{r} 1 \cdot 375 \\ 6 \cdot 019 \\ 12 \cdot 38 \\ 24 \cdot 09 \end{array} $	191·85 107·85 79·03 58·65	$\begin{array}{c} (7\cdot107) \\ (6\cdot791) \\ (6\cdot779) \\ (6\cdot806) \end{array}$	378·55 378·31 378·13 377·90	0·6967 1·7159 2·5865 3·7386	$(7 \cdot 130)$ $(6 \cdot 637)$ $(6 \cdot 584)$ $(6 \cdot 566)$	$51.95 \\ 63.81 \\ 82.39 \\ 102.1$	$\begin{array}{c} 41 \cdot 25 \\ 37 \cdot 49 \\ 33 \cdot 31 \\ 30 \cdot 10 \end{array}$	6·888 6·909 6·957 6·973	377·50 377·38 377·21 377·04	5.6773 6.3384 7.2748 8.1859	$6.590 \\ 6.593 \\ 6.618 \\ 6.613$
			Ru	n 2. Ce	ll R. $\kappa =$	0.624.	Specime	n II.			
$3.443 \\ 9.942 \\ 17.71 \\ 34.45$	$137.53 \\ 87.68 \\ 67.67 \\ 49.79$	$\begin{array}{c} (7 \cdot 092) \\ (6 \cdot 900) \\ (6 \cdot 852) \\ (6 \cdot 824) \end{array}$	$\begin{array}{c} 378 \cdot 41 \\ 378 \cdot 19 \\ 378 \cdot 01 \\ 377 \cdot 73 \end{array}$	1.2514 2.3048 3.1701 4.5406	$(6.961) \\ (6.714) \\ (6.632) \\ (6.560)$	46·49 77·27 95·76	$43.73 \\ 34.46 \\ 31.10$	6·897 6·996 7·004	377·59 377·25 377·10	5·2617 7·0530 7·8968	6·639 6·650 6·648
			R	un 3. Ce	ell S. $\kappa =$	0.626.	Specime	en I.			
$1.890 \\ 7.440 \\ 10.34$	$174.35 \\ 100.02 \\ 86.16$	(7.242) (7.017) (6.895)	378·51 378·27 378·19	$0.8708 \\ 1.9670 \\ 2.3558$	$(7 \cdot 278)$ $(6 \cdot 843)$ $(6 \cdot 706)$	$\frac{18.95}{37.90}\\64.48$	65·77 47·76 37·47 Mea:	(6·885) 6·866 6·975 n 6·941	377·99 377·66 377·35	3·2972 4·8702 6·4922 Mea	(6·659) 6·622 6·653 n 6·626
			G	lutaric ad	cid $(M = 1)$	32.06 ; <i>1</i>	$\Lambda_0 = 378$	8.0).			
			R	un 1. Ce	ell Q. $\kappa =$	0.500.	Specime	en I.			
$1.056 \\ 5.268 \\ 11.18 \\ 21.54$	194.0499.6571.0752.47	(5.718) (4.972) (4.867) (4.816)	$\begin{array}{c} 377 \cdot 12 \\ 376 \cdot 92 \\ 376 \cdot 77 \\ 376 \cdot 59 \end{array}$	$0.5434 \\ 1.3927 \\ 2.1089 \\ 2.9994$	(5.671) (4.870) (4.740) (4.666)	$46.46 \\ 61.89 \\ 81.04 \\ 100.5$	$36.31 \\ 31.66 \\ 27.84 \\ 25.13$	$4.721 \\ 4.740 \\ 4.747 \\ 4.756$	376.28 376.17 375.95 375.85	$4 \cdot 4936$ 5 \cdot 2095 6 \cdot 1420 6 \cdot 6709	$4.530 \\ 4.538 \\ 4.531 \\ 4.533$
9.079	114.01	(5.990)	Ri	in 2. Ce	$\lim_{\kappa \to \infty} \mathbf{R} \cdot \mathbf{\kappa} =$	0.615.	Specime	en II.	956.90	9.0509	(4.507)
$3.952 \\ 10.10 \\ 18.16$	$ \begin{array}{r} 114.81 \\ 74.52 \\ 56.70 \\ \end{array} $	(5.229) (4.887) (4.864)	376·96 376·78 376·62	1.2029 2.0622 2.8234	$(5 \cdot 131)$ $(4 \cdot 761)$ $(4 \cdot 658)$	$34.75 \\ 47.23 \\ 79.17$	41.74 35.98 25.28 Maa	(4.763) 4.728 4.771 0.775	376.39 376.24 375.84	3·9793 4·6633 6·8036 Mea	(4.587) 4.541 4.535 4.535
							inca			Mica	
			r. F	Adipic ac un l Ce	M = 1	46·08; Λ 0·600	$h_0 = 376$	*6). ≥n T			
0.983	187.05	(4.819)	375.71	0.4894	(4·786)	42·44	34.35	3.860	374·98	3.8757	3.720
$5.912 \\ 11.00 \\ 21.47$	$87.32 \\ 64.87 \\ 47.38$	$egin{array}{c} (4\cdot 138) \ (3\cdot 943) \ (3\cdot 887) \end{array}$	$375 \cdot 50 \\ 375 \cdot 38 \\ 375 \cdot 22$	$1.3746 \\ 1.9007 \\ 2.7105$	$egin{array}{c} (4\cdot 148) \ (3\cdot 854) \ (3\cdot 771) \end{array}$	60·01 77·69 96·66	$29.05 \\ 25.69 \\ 23.14$	$3.869 \\ 3.879 \\ 3.888$	374·83 374·69 374·57	$4.6502 \\ 5.3259 \\ 5.9715$	$3.716 \\ 3.715 \\ 3.715$
			R	un 2. Ce	ell R. $\kappa =$	· 0·612.	Specime	en II.			
$2.501 \\ 8.188 \\ 15.33 \\ 33.23$	$127.02 \\ 74.62 \\ 55.81 \\ 38.62$	$(4 \cdot 317)$ $(4 \cdot 010)$ $(3 \cdot 952)$ $(3 \cdot 894)$	$375 \cdot 61 \\ 375 \cdot 45 \\ 375 \cdot 31 \\ 375 \cdot 08$	$0.8456 \\ 1.6275 \\ 2.2795 \\ 3.4212$	$(4 \cdot 228)$ $(3 \cdot 946)$ $(3 \cdot 844)$ $(3 \cdot 762)$	50·68 69·68 90·95	31·48 27·05 23·89 Mea	3.864 3.873 3.882 n 3.873	374·90 373·74 374·62	4·2557 5·0297 5·8000 Mea	3.718 3.714 3.710 an 3.715

Jeffery and Vogel:

TABLE VI (contd.).

$\times \begin{array}{c} C \\ \times 10^4. \end{array}$	μ , obs.	$\stackrel{K_{ m 1. cl.}}{ imes 10^3}$.	Λ_{e} .	$ imes rac{c^{\prime\prime}}{10^4}.$	$rac{K_{ m 1, th.}}{ imes 10^3}.$	$\times \begin{array}{c} C \\ \times 10^4. \end{array}$	μ. obs.	$egin{array}{c} K_{1, \ { m el.}}\ imes \ 10^3. \end{array}$	$\Lambda_{\mathbf{e}}$.	$ imes rac{c^{\prime\prime}}{10^4}.$	$\stackrel{K_{1 ext{ th.}}}{ imes 10^8}.$
			P	imelic ac	id (M = 1)	60·10; Λ ₀	= 374	·6).			
			Rı	in 1. Ce	ll Q. к =	= 0·540. S	Specime	en I.			
$1 \cdot 249 \\ 6 \cdot 495 \\ 12 \cdot 54 \\ 25 \cdot 00$	$171.72 \\78.03 \\56.82 \\40.65$	$\begin{array}{c} (4 \cdot 848) \\ (3 \cdot 560) \\ (3 \cdot 402) \\ (3 \cdot 302) \end{array}$	373·69 373·50 373·39 373·23	$0.5741 \\ 1.3570 \\ 1.9087 \\ 2.7228$	(4.797) (3.488) (3.318) (3.202)	$51.07 \\ 69.71 \\ 89.73 \\ 110.5$	$28.70 \\ 24.84 \\ 21.78 \\ 19.71$	$3 \cdot 225 \\ 3 \cdot 216 \\ 3 \cdot 222 \\ 3 \cdot 227$	$372 \cdot 97$ $372 \cdot 85$ $372 \cdot 72$ $372 \cdot 60$	$3.9305 \\ 4.5483 \\ 5.2443 \\ 5.8416$	3·130 3·083 3·087 3·084
			Ru	n 2. Cel	1 R. $\kappa =$	0.552. S	pecime	n II.			
$2.561 \\ 7.898 \\ 9.214 \\ 15.15$	$121.01 \\71.02 \\65.61 \\52.04$	(3.947) (3.501) (3.424) (3.389)	373·63 373·48 373·45 373·35	$0.8294 \\ 1.5014 \\ 1.6185 \\ 2.1101$	$(4 \cdot 897)$ $(3 \cdot 425)$ $(3 \cdot 348)$ $(3 \cdot 302)$	$20.20 \\ 36.95 \\ 45.71 \\ 79.12$	45.03 33.65 30.25 23.17 Mean	$(3\cdot313)$ $(3\cdot276)$ $3\cdot229$ $3\cdot227$ n $3\cdot225$	373·29 373·10 373·03 372·78	2·4531 3·3325 3·6905 4·9176 Mea:	(3·219) (3·167) 3·105 3·096 n 3·097
			S	uberic ac	$id \ (M = 1$.74·11; Λ ₀	= 373	·1).			
			Run 1.	Cells R	, J, V, N.	$\kappa = 0.59$	5. Sp	ecimen I	•		
					(((= 0))	37.11.00	FO OO	(0.000)	0 - 1 00	1 6646	(0.000)

1.502	156.16	(4.525)	$372 \cdot 14$	0.6303	(4.473)	N 11.02	59.89	(3.382)	371.93	1.7745	(3.302)
4.160	98.20	(3.911)	372.07	1.0977	(3.842)	J 45.05	29.67	3.095	371.55	3.5975	2.987
6.714	76.71	(3·573)	372.00	1.3845	(3.500)	Ň 78·35	22.81	3.119	371.31	4.8131	2.987
8.602	67.64	(3·453)	371.96	1.5642	(3.377)	V 91·36	21.16	3.151	371.23	5.2046	2.990
11.62	57.98	(3·323)	371.93	1.8112	(3.242)	J 94·82	20.73	3.129	$371 \cdot 21$	5.2951	2.996
			Run 2.	Cells R,	J, V, N.	$\kappa = 0.61$	2. Spe	cimen I	I.		
2.551	130.31	(4.753)	$372 \cdot 11$	0.8790	(4.683)	N 28·89	38.00	(3.336)	371.66	3.0928	(3.229)
5.162	93.02	(4.272)	372.05	1.2903	(3·973)	J 51·41	$27 \cdot 91$	`3·109 [´]	371.49	3.8624	`2·998
9.121	64.80	(3·33 0)	371.95	1.5854	(3·256)	J 69∙26	$24 \cdot 21$	3.118	371.36	4.5153	2.997
		· · ·			. ,	V 93·24	21.01	3.133	371.22	5.2771	3.001
							Mear	1 3·117		Mea	n 2·994

The values of μ at round concentrations are given below :

$C \times 10^4$.	Malonic.	Succinic.	Glutaric.	Adipic.	Pimelic.	Suberic.
1.0	360.00	200.00	195.00	185.00	175.00	165.00
5.0	304.20	118.50	103.00	95.00	85.00	83 ·00
10.0	265.70	88.10	76.80	67.60	62.90	62.00
20.0	219.50	64.05	54.00	48.40	44.95	44.50
3 0·0	$193 \cdot 15$	53.42	45.40	40.16	37.30	36.20
40.0	175.55	46.60	39.45	35.35	$32 \cdot 40$	31.60
50.0	162.35	41.85	35.20	31.90	29.00	28.40
60.0	151.80	38.55	31.95	29.06	26.42	26'00
70.0	142.75	$35 \cdot 80$	29.40	26.75	24.20	23.95
80.0	135.30	23.70	27.60	25.03	23.02	22.65
90.0	128.35	31.92	26.12	23.80	21.75	21.50
100.0	121.10	30.80	25.20	$22 \cdot 90$	20.62	20.22

The influence of changing the factor from 0.55 to 0.50 in the calculation of the mobility of the acid ion for the extreme case of malonic acid is shown in Table VII; the effect is small, and will be much smaller for the other normal dibasic acids.

TABLE VII.

	$\iota_{0 HX'} =$	$\iota_{0 \text{ HX}'} = 0.50 \times 64.7 = 32.4; \Lambda_0 = 380.4; \text{ Run}$			
$C \times 10^4$.	μ , obs.	$K_{1, \text{ class.}} \times 10^3$.	Λ_{e} .	$c^{\prime\prime} imes 10^4.$	$K_{1, \text{ therm.}} \times 10^{3}.*$
1.626	357.04	(2.333)			
7.541	282.37	(1.612)			
22.28	211.44	(1.549)			
33.93	184.62	`1 ·539	376.29	16.5928	(1.445)
58.79	$153 \cdot 21$	1.539	375.05	23.6858	1.427
84.72	131.24	1.545	373.97	29.7317	1.425
107.0	119.63	1.544	$373 \cdot 16$	$34 \cdot 3829$	1.413
$122 \cdot 4$	113.45	1.552	372.65	$37 \cdot 1851$	1.416
		Mean 1.544			Mean 1.420

* $K_{1, \text{therm.}}$ has been evaluated only over the range where the $K_{1, \text{class.}}$ figures are significant (see above, p. 26).

TABLE VIII.

Sodium Hydrogen Salts.

Run 1: Cell, Q; κ of water, 0.592; Specimen of acid, II; Specimen of salt, II. $C \times 10^4$ 1.064 6.124 11.01 22.90 43.68 68.67 85.50 1 Λ_e	.00·2 85·74						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00·2 85·74						
Run 2: Cell, R; κ of water, 0.604; Specimen of acid, II; Specimen of salt, II.							
C > 104 3.654 0.473 18.19 33.94 53.53 63.47 03.54							
Λ_{1}							
Run 3 · Cell V · of water 0.604 · Specimen of acid I · Specimen of salt I							
$C \sim 104 \qquad 9.911 \qquad 5.901 \qquad 0.947 \qquad 19.95 \qquad 39.64 \qquad 60.90$							
Λ_c							
Sodium hydrogen succinate ($M = 140.04$).							
Run 1: Cell, V; κ of water, 0.615; Specimen of acid, II; Specimen of salt, II.							
$C \times 10^4 \dots 1.706 10.74 19.45 45.39 88.32 113.7 \ \Lambda_e \dots 120.84 94.88 91.74 88.36 85.47 84.29$							
Run 2: Cell, Q; κ of water, 0.525; Specimen of acid, I; Specimen of salt, I.							
$C \times 10^4 \dots 1.306 6.001 9.570 16.26 33.01 52.14 61.37$	70.62						
Λ_{c} 122.84 99.34 95.79 92.81 89.54 87.66 87.02	86.25						
Sodium hydrogen glutarate ($M = 154.04$).							
Run 1: Cell, Q; κ of water, 0.615; Specimen of acid, I; Specimen of salt, I.							
$C \times 10^4 \dots 0.970 6.031 10.13 20.18 42.05 55.66 71.84$	87.76						
$\Lambda_e \dots 133.74 95.29 91.84 87.60 84.25 83.05 81.81$	80'84						
Run 2: Cell, R; κ of water, 0.666; Specimen of acid, II; Specimen of salt, II.							
$C imes 10^4 \ \dots \ 3^{\circ}608 \ 10^{\circ}40 \ 18^{\circ}46 \ 36^{\circ}69 \ 72^{\circ}91 \ 86^{\circ}23 \ 107^{\circ}8 \ \Lambda_c \ \dots \ 103^{\circ}34 \ 92^{\circ}20 \ 88^{\circ}40 \ 84^{\circ}50 \ 81^{\circ}74 \ 80^{\circ}89 \ 79^{\circ}63$							
Sodium hydrogen adipate ($M = 168.07$)							
Bun 1: Cell Ω : " of water 0.540: Specimen of acid I: Specimen of salt I							
$C \times 10^4$ 1.545 4.629 13.48 24.20 47.99 70.54 92.35 1	13.9						
$\Lambda_e \dots 124.45 101.38 89.22 85.49 82.67 80.98 79.38$	78.94						
Run 2: Cell, R; K of water, 0.593; Specimen of acid, II; Specimen of salt, II.							
$C \times 10^4 \dots 1.544 7.369 14.59 25.74 52.79 71.93 106.3$							
Sodium hydrogen pimelate ($M = 182.09$).							
Kun 1: Cell, K; κ of water, 0.940; Specimen of acid, 1; Specimen of sait, 1.	19.6						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.34						
Run 2: Cell, Q; κ of water, 0.612; Specimen of acid, II; Specimen of salt, II.							
$C \times 10^4 \dots 2.510$ 7.102 11.01 20.15 39.86 61.78 85.10							
Λ_{e} 123.98 92.82 89.84 86.18 82.75 80.31 78.58							
Sodium hydrogen suberate ($M = 196.10$).							
Run 1: Cells, R, J, V, N; κ of water, 0.671; Specimen of acid, I; Specimen of salt, I.							
$C imes 10^4$ 1:352 3:331 6:138 8:934 12:12 28:07 49:87	65·72						
$\Lambda_c = 104$ 66.13 96.28 110.9 C > 104 66.13 96.28 110.9	8.41 V						
$\Lambda_e \dots \dots$							
Run 2: Cells, Q, J, V, N; K of water, 0.652; Specimen of acid, II; Specimen of salt, II.							
$C imes 10^4 \ \dots \ 2^{\circ}501 \ 7^{\circ}342 \ 10^{\circ}09 \ 13^{\circ}14 \ 21^{\circ}12 \ 35^{\circ}51 \ 54^{\circ}98$	77.61						
$\Lambda_c \dots 137.34 96.01 97.15 86.00 J 82.94 V 80.57 N 79.05 J 70.05 J 70.05 $	7.52 V						
$\Lambda_c \dots 39'92$ $\Lambda_c \dots 71.88 N$							

The *experimental* figures for the sodium hydrogen salts are collected in Table VIII; these were determined (a) to provide conductivity data for these substances, and (b) for the estimation

of approximate values of K_2 , but no satisfactory results were obtained. No solvent correction has been applied, but this will be discussed in a future communication. The stock solutions were prepared by weighing sufficient of the acid to give an approximately N/10-solution and then adding the calculated quantity of the disodium salt.

Correction.—The work described in Parts I and II (loc. cit.), which includes malonic acid, is subject to the following errors and criticisms: (1) Subtraction of the solvent correction for the acids—no solvent correction is necessary; (2) the density factor in the calculations was reversed; (3) the use of the normal solvent correction for the disodium salts—the correct method of application of a combined solvent hydrolysis correction is described in the present paper; (4) the values for Λ_0 of the acids are high for reasons given in footnote on p. 22; (5) values of $K_{1, class.}$ are given at round (interpolated) concentrations : the correct procedure is to use the actual experimental concentrations and to calculate the true dissociation constants, $K_{1, therm.}$.

The original results must therefore now be regarded as very approximate, and revised figures for all the acids, calculated in accordance with the methods described in this paper, will be published in the near future.

The authors' thanks are due to the Royal Society and Imperial Chemical Industries, Ltd., for grants.

WOOLWICH POLYTECHNIC, LONDON, S.E. 18. UNIVERSITY COLLEGE, SOUTHAMPTON.

[Received, July 26th, 1934.]